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Physical principles of mammography

Mammography: low-X-ray energy examination for breast tissue characterization.
Screening program: a procedure in which asymptomatic population groups are
subjected to make an early diagnosis of a high social impact and a high-risk disease.

: Mammographic exam
The photons forming an x-ray beam will Imaging system

be absorbed in a different way depending
on the tissues passing through.
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Breast density

Mammographic density: the relative amount of radiodense tissue elements compared with
the amount of fatty tissue elements visible on a mammographic exam.

* Personalized dosimetric index (RADIOMA Project)
A. C. Traino, D. Caramella, M. E. Fantacci et al., “Average absorbed breast dose in mammography: A new possible dose index matching the
requirements of the european directive 2013/59/euratom”, European radiology experimental, 2017.

* Risk factor for breast cancer

K. Krishnan, L. Baglietto, et al., “Longitudinal study of
mammographic density measures that predict breast cancer
risk”, Cancer Epidemiology and Prevention Biomarkers, 2017.

* Masking effect
BOYD, Norman F.,, et al. Mammographic density and the risk
and detection of breast cancer, New England Journal of %, 4 ‘.
Medicine, 2007. , ; | . &

Density standard: fifth edition (2013) of

. . Breast is almost Scattered areas of Heterogeneously Extremely dense
B | RA DS ( B rea St I Ma g| N g Re pO rt| N g an d entirely fatty fibroglandular density  dense breasts, may breasts lower the
obscure small masses sensitivity of
Data SyStemS) at|aS mammography

E. Sickles, C. D’Orsi, L. Bassett, C. Appleton, W. Berg, and E. Burnside, “Acr bi-rads atlas”, Breast Imaging Reporting and Data System, pp. 39-48, 2013.
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Deep learning

Deep learning: a subset of Machine Learning (ML) and the capability of an Artificial
Intelligent (Al) system to learn from experience and understand the world in terms of a
hierarchy of concepts, building these concepts on top of each other in a deep graph with
many layers.

Inputlayer {11} (i) O s Machine Learning

" Image classification o »
/ pipeline & o ‘ST\_.‘ = %% _*-

Input Feature extraction Classification Output

Hidden layer 1

1. Input Deep Learning

2. Learning "
3. Evaluation G — ME R -

Input Feature extraction + Classification Output

Hidden layer 2
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Convolutional Neural Networks

Convolutional Neural Network (CNN): a specialized kind of neural network based on
convolutional layers for processing data that have a grid-like structure.

Fully-ct;nsnected Ful -(t:;\iected
Neural Network Neural Network
st Mo B mosas k. Crp =1 K= (T+K)( g Z m,n)K (i —m,j —n)
(5x5) karnel Max-Pooling (5x5)kernel  pax pooling (with
valid padding (2x2) valid padding (2x2) dropoit) m
- @0 I: 2D image
XY activation ma|
@ 1 K: 2D filter ___— 32x32x3 image i
e 2 " 5x5x3 filter
28
INPUT n1 channels nl channels n2 channels n2 channels s . 9
(28 x28x 1) (24 x24 x n1) (12x12xn1) (8x8xn2) (4x4xn2) . OUTPUT ;gg;g:\:séas::gﬁloverall
n3 units 32 28
* The network will learn filters that activate when they see some type of visual * 1
feature at each layer. Single depth slice
* Sharing of the parameters: each neuron is connected to a part of the input.  «x ; ; : ‘; o wn 2 mes [
N o . . nd siri
It makes the network invariant to input translation. = ki -
* Pooling layer: performs an operation (e.g. maximum) that produces a ki
subsampled image to reduce the space dimensionality.
p 4
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Explainability and Visualization

Black Box

Explainability: qualitative understanding between the input
and the response to build transparent models for which it is
possible to explain why they predict what they predict.

Input

Visualization: visual representation of patterns memorized by the CNN to identify salient
regions that contribute most to prediction and understand the logic inside a CNN.

Exploration &

Edits & Preparation Model selection Direct
Enrichment & Building manipulation

< & L

DATA PRE- ML
PROCESSING MODEL VISUALIZATION
N\

\ 4
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Explainability and Visualization
= Logistic regression classifier. -

Prcdn?ed. Wo '-'rcdrz:c_i Ped«cted Nalf

= Training set: pictures of wolves with snow in )

the background, pictures of huskies without B« A=
SNOW. ——

True: Husky

= Prediction: «wolf» if there is snow, «husky»
otherwise.

o

co rre ct b ut unre Iia b I e (a) Husky classified as wolf (b) Explanation

M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should i trust
you?: Explaining the predictions of any classifier”, 2016.
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Residual Neural Network (ResNet)

/mput bb%
Conv2D Conv2D
BatchNorm BatchNorm
LeakyRelLU I
Conv2D
BatchNorm
LeakyRelLU
Conv2D
BatchNorm
LeakyReLU ——p Add
‘LeakyReLU

Conv2D

BatchNorm

LeakyRelLU

Conv2D

BatchNorm

LeakyRelLU

Conv2D

BatchNorm

LeakyReLU ——p Add
LeakyRelLU

Conv2D l

BatchNorm

LeakyReLU .

Conv2D

BatchNorm

LeakyRelLU '

Conv2D '

BatchNorm

LeakyReLU —— = Add
LeakyRelLU
Next Block

ResNet: a particular CNN made up of several residual blocks. Rather
than learning a function, the residual block only learns the residual.

Hyperparameters
HOY) F + X () <
l * 41 conv layers in 12 similar blocks
* Training in batch of 4 images for
Conv. Layer Conv. Layer
100 epochs
LeRgRELY E LeakyReLUI Fi) * Loss function: Categorical Cross-
Conv. Layer Conv. Layer Entro py
I I *  Optimizer: SGD
y S A— * Regolarization: Batch Normalization
“Plain layers” Residual Block * Lea rning rate = 01’ Decay — O’ 1’
Patience = 15, Monitor = validation
H(x) = F(x) +x — F(x) = H(x) — x loss

F. Lizzi, et al. "Residual Convolutional Neural Networks to Automatically Extract Significant Breast Density
Features." International Conference on Computer Analysis of Images and Patterns. Springer, Cham, 2019.
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Software and Hardware

Keras: API written in Python on top of Tensorflow framework Ke ras

to train, fit and evaluate the CNN.

Hardware available by “Istituto Nazionale di INFN

F | S | Ca N u C | e a re” ( | N F N ) . Istituto Nazionale di Fisica Nucleare

e CPUs: 2x 10 cores Intel Xeon E5-2640v4 @2.40 GHz

* RAM: 64 GB
* GPUs: 8x nVidia Tesla K80, with 2x GPUs Tesla GK210,
24 GB RAM and 2496 CUDA cores each
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Data

pproach mmm——) |ack of huge public mammograms dataset

Collected dataset: 1962 mammographic exams made us SO covice

available by the “Azienda Ospedaliero-Universitaria Pisana” % = Np B

(AOUP) and collected by a radiologist, specialized in AZIENDA OSPEDALIERO

mammography, and a radiology technician. UNIVERSITARIA PISANA

e Each exam composed of four images (CC, MLO) (right, left). A B C

e Exams acquired with 4 different mammographic systems. N. of exams 264 | 611 | 888 | 199

* Negative exam reports. Average age 67 |63 |58 |53

 Ground truth: density class (A, B, C, D) label assigned to each Standard deviation | 11 |11 |9 | 6
Median 68 62 56 52

exam by a radiologist.
* DICOM format.
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Goals and methods

INPUT: Mammographic OUTPUT: Breast
exam density class

Deep
Residual
CNN

classifier

Black Box

(ak

,T' O®
2 O

* Multi-layer nonlinear structure
* Millions of mathematical operations
* About 2 millions learnable parameters

Goal: explain the classifier behaviour and
interpret its internal processes.

\ 4

To assess trust and optimize
the performance

Methods:

1. How the outpu 2. Off-line
varies wit
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Goals and methods

] Preprocessing * Preparatory steps
. . * Results
varies e Pectoral muscle segmentation
J CNN optimization * Training and generalization

* Model fine-tuning: Dropout
* Number of channels
* Dataset distribution

2. Off-line J Explainability * Filters and Feature maps
* Heatmaps (grad-CAMs)

visualizati
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Preprocessing — Preparatory steps

500

1. Decompression

2000

2. PNG conversion

img8 = 256 *

o 500 1000 1500

img — bit_min

bit_mazx — bit_min

3. 8 bits conversion /

4. Background removal

5. One by one inspection /

6. «Real-time» Data

: Zoom
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Preprocessing — Results

» Properly data preparation and exclusion of problematic exams.

Mammographic acquisition system Original dataset size | Pre-processed dataset size
(No. of exams) (No. of exams)

GIOTTO IMAGE SDL 232 232

SELENIA DIMENSIONS 50 49

GE Senograph DS VERSION ADS 54.11 121 116
GE Senograph DS VERSION ADS 54.11 1561 1546

» Improvement in the classifier performance.

First release With Wu et al. Wu et al. Wu, et al. "Breast density
(1561 exams) preprocessing | (200000 exams) | (2000 exams) JEEEUCUCIRTIURCS S
(1546 exams) convolutional neural networks.",
2018.
test accuracy (%) 75.3 83.1 76.7 72.9
recall (%) 72.1 80.1
precision (%) 76.4 87.9
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Pectoral muscle segmentation

Pectoral muscle: mass of tissue on which the breast rests, it turns up in MLO mammograms
views. It has pixel intensities and texture similar to that of breast dense tissues.

* Different instruments and settings.

* |t doesn’t happen in all the images.

* Extremely variable in size, intensity,
shape and texture.

—

Segmentation algorithm /
Step 1) View selection
Step 2) 8-bit transformation
Step 3) Background removal
Step 4) ROI detection
Step 5) Noise reduction
Step 6) ROI binarization and mask
Step 7) Edge coordinates and linear fitting
Step 8) Mean grey level replacement
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Training and generalization

Supervised learning: each example is a pair consisting of an input object and a desired
output value. A supervised learning algorithm analyzes the training data and produces an
inferred function, which can be used for mapping new examples.

Underfitting Appropriate capacity Overfitting

Training Set Validation Set Testing Set e®

To train the models To make sure the models To determine the
are not overfitting accuracy of the models

Generalization: the ability to predict the right output on unobserved inputs.
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Training and generalization

Four different CNNs per projection

B 1 11 0 ‘

0 Average of classification scores of last layers

True label

D A 0 0 10 7

e o < Q
Predicted label —

ratio of correctly predicted
ACCURACY ™ gpservations to the total observations

ratio of correctly predicted positive observations
to the all observations in actual class

Performance
metrics

— RECALL —

PRECISION — ratio of correctly predicted positive observations
to the total predicted positive observations

~—
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Model fine-tuning: Dropout

Dropout: regularization method that consists in randomly
setting of a fraction rate of input units to 0 at each update
during training time, to prevent the model from overfitting.

A J

(a) Standard Neural Net (b) After applying dropout.

batch_normalization_41: BatchNormalization

| | No Dropout With Dropout

test accuracy (%) 771 83.1

t h e 450x450 recall (%) 717 80.1
leaky_re_lu_37: LeakyReLU precision (%) 84.6 87.9

network. L, test accuracy (%) 77.1 78.8
/ S e 650x650 recall (%) 76.3 774

- precision (%) 74.5 79.3

test accuracy (%) 72.9 79.7

global_average_pooling2d_1: GlobalAveragePooling2D 850x850 recall (0/0) 72.1 764

precision (%) 724 844

dense_I: Dense t
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Dataset distribution

AOUP distribution: A: 12%, B:28%, C:50%, D:10% | > Clinical database
TRANSFERABILITY

BIRADS distribution: A: 10%, B:40%, C:40%, D:10% |—— Screening practice
Uniform distribution: A: 25%, B:25%, C:25%, D:25% | —— Further comparison

AOUP Training set
360 | | AOUP Testset BIRADS Test set Uniform Test set
test accuracy (%) 76.6 76.3 72.2
204 ResNet1 recall (%) 72.0 75.8 72.2
80 precision (%) 75.7 74.2 77.5
70 test accuracy (%) 75.3 737 73.6
& Sag ResNet2 recall (%) 71.6 727 73.6
g‘ precision (%) 2 74.6 80.3
c -
g a0 test accuracy (% 78.5 79.7 73.6
& 40 ResNet3 recall (%) 74.2 77.9 73.6
30- precision (%) 81.2 83.0 794
20- BIRADS Training set
10- | | AOUP Testset BIRADS Test set Uniform Test set
0 test accuracy (%) 753 77.1 65.3
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 ResNet1 recall (%) 66.7 71.7 65.3
I Fatty [BD Scatteredareas [ Heterogeneously dense [_| Extremelydense precision (%) 83.8 816 747
test accuracy (%) 76.6 80.5 75.0
BIRADS density class distribution calculated on ResNet2 | recall (%) 71.9 76.9 750
. h i . precision (%) 78.3 81.2 80.4
3,865,070 screening mammography examinations rest accuracy (% o o =
over 13 years (1996-2008). ResNet3 recall (%) 75.2 80.1 73.6
precision (%) 82.6 87.9 79.0

E )
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Heatmaps (grad-CAM)

Rectified Conv FC Layer
Feature Maps Activations

A
>

] S ©) EES T =]

Heatmap: for a particular category indicates
which regions of an image are being used by
the model for discrimination among classes.

—  To check the classifier behavior

T fif o
. .r- 1+ c | Tiger Cat
— " Toimprove the classifier performance W& 1 i
I

Y

Gradient based Class Activation Map (grad-CAM):  L;. ., .., = ReLU(Y a5 A")  af = %ZZ ‘)’zk

- -t OA;;
gradient calculation of the final classification score K i g
with respect to the final convolutional layer.

@ : weights of the final dense layer

C : predicted class

A¥ : feature maps of the last conv layer

Grad-CAM: Visual Explanationsfrom Deep Networks via Gradient-based Localization - R. R. Selvaraju et al. —2019 -ArXiv
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Qualitative evaluation: observing if they
activate at the densest areas of the breast.

For the A class the classifier does not recognize
any dense region and the maps activate almost
always at the edge of the breast.




Explainability — Heatmaps (grad-CAM)

AN G| 1

norm_1 norm_2 norm_1 norm_2
norm_1 : Sets each input w ) y -~k
mean to 0 and 2 % -
divides each input by : = -
its std. norm_1 norm_2 norm_1 norm_2
norm_2 : Rescaling factor,
multiplies the data norm_1 : test accuracy = 79.7%, recall = 79.5%, precision = 78.3%

by 1./255.
norm_2 : test accuracy = 82.2%, recall = 78.0%, precision =89.7%
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Explainability — Heatmaps (grad-CAM)

Pectoral muscle # L . ? .L
segmentation * *
Non-segmented e B J = J _J
mammograms: P > 7
test accuracy = 79.9%, A A L5
recall = 78.1%, 4 4 -

L‘ -“h_‘

z \.
B

mammograms: QJ =t
test accuracy = 82.0%,
recall = 80.3%,
precision = 83.3%

precision = 81.1%
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Conclusions

» A better understanding of how the developed BIRADS classifier works.

» Which factors most affect the classifier performance and accuracy results
(data preparation, model architecture, classes distribution)

» Systematic improvement of performance measures of accuracy, recall and precision.
» Assessed trust in the model.

» Since it does not exist a well-established method for explainability, the work here described
can be a starting point for a further study.
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Outlook

» Ground truth: maximum agreement between more than one radiologist and segmented images.

» Dataset: increasing dataset size and more exams acquired with different mammographic
systems.

» To test other training conditions.
» To transform the model in a mixed and controlled classifier.

» CAMs used as region proposal for features calculation, also for other models of breast density
classifier. This region proposal could also be used on tumors after fine-tuning.
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Mammographic systems and resolution

» GIOTTO Image SDL: matrix 2816 x 3584 pixel, pixel size 85 um,
spatial resolution 6 Ip/mm
(230 exams)

» Selenia Dimensions (Hologic): matrix 3328 x 4096 pixel, pixel size 70 um,
spatial resolution 2D 7.1 Ip/mm, 3D 3.5 Ip/mm
(50 exams)

» GE Senograph DS: : matrix 2294 x 1914 pixel, pixel size 100 um,
spatial resolution 5 Ip/mm
(VERSION ADS 54.11: 121 exams, VERSION ADS 53.40: 1561 exams)
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Deep learning in medical imaging

Dataset problem: Very few large public data sets available.

» Legal and ethical issues regarding the use of clinical imaging data.
> Specific annotations for the image data require domain expert.

» Label noise: there is no consensus among the radiologists.
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Convolution

Input

Kernel

a

C’IK=I®K:(I*K)(z’,j)=ZZI(m,n)K(i—m,j—n) ¢

m n T

h

v Output

Discrete convolution can be viewed as
multiplication by a matrix. L »

aw + br + bw + ecxr + cw + dr +
ey + fz fui: + gz gy + hz

ew + fz -+ fu + gz + gw + hzx +
W ok 92 jy + kz ky + Iz
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Optimization

regularization loss
W score function I e Y
> ata loss
" f(xiv W) > L
A
T
Yi;

The dataset (x,y) is fixed.
The weights start out as random numbers and can change.
The score function computes class scores, stored in vector f.

The loss function contains: 1) The data loss, which computes the compatibility between the scores f and the labels
y and 2) The regularization loss, which is only a function of the weights.

During Gradient Descent, we compute the gradient on the weights and use them to perform a parameter update.
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Learning rate

igh learning rate

low learning rate

high learning rate

good learning rate
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Activation functions

Input and activation functions produce the single neuron output.

Sigmoid 1 Leaky RelLU

o) = ol max(0.1z, x) .
tanh Maxout

tanh(z) . - max(wi T + by, wd z + bo)
ReLU ELU /
maX(O) x) {Z(ew _ 1) i i 8 B e— To
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Stochastic Gradient Descent (SGD)

SGD is a Gradient Descent (GD) algorithm semplification.

VWE(Zi1 Wt)

iM=
-

Wi+1 = Wr — ");

The gradient is calculated from a single random example z.

Wil = We — Ve VwE(Ze, we)
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Backpropagation algorithm

Recursive application of «chain rule» in the graph.

xERm,yER",g:Rm%R",f:]R”—>R. If y = g(x) and z = f(y)
then: | -
0z 0z Jy;

aX,'_ r a—}/J'BXi
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ResNet architecture

Jeaky_re_h_7: LeakyRelU
\
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Datasets

The exact number of exams within each dataset.

| Tmining set Validation set Test set
AOUP 1232 exams 156 exams 158 exams
(A:142, B:337, C:611, D:142) (A:20, B:45, C:74, D:17) (A:20, B:46, C:75, D:17)
842 exams 118 exams
BIRADS | A.34, B:337, C:337, D:84) (A:12, B:47, C:47, D:12)
Unif 564 exams 72 exams
nIOrM | (A:141, B:141, C:141, D:141) (A:18, B:18, C:18, D:18)
| Training set Validation set Test set
Original dataset | 924 156 134
New segmented dataset | 910 153 128
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Summary of performance improvement

Best performance metrics ||

obtained as a result of the

_ test accuracy (%) 77.3 83.1
described analyses.

recall (%) 77.1 80.1

precision (%) 78,6 87.9

L)

F. Lizzi et al., “Residual convolutional neural networks for breast density classication”, in
Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems
and Technologies -Volume 3: BIOINFORMATICS, INSTICC, SciTePress, 2019, pp. 258—-263.

. [dac: acAUC [ op-1 | top2 | top-3 | superciass
WARNING: with what reliabilitv? Wu, Nan, et al. "Breast density l“;d :;;8 002:9 00“;)7 003‘98 ;"g;c s
. W1 what reliapoiity ! ifi i i i c . Ny : . .
Y classification W|tr'3 deep convolutional 10% 1 0907 0145 | 0976 | 0.999 | 0.856
neural networks.” , 2018. 100% | 0.916 0.767 | 0982 | 0.999 | 0.865
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ResNetl

Input: 450x450x1

Without Dropout ‘.
; : CC_R MLOR CCL MLO_L Right Left All
Accuracy over epochs for 450x450 pixels images TeSt Set' : s - Q e p— | = — — =% g
i £ . ; A .
AOUP g test accuracy (%) 722 74.0 72.8 69.6 766 734 753
07 Teq oo 10 0 recall (%) 64.7 67.4 68.3 57.3 67.3 664 66.7
oe precision (%) 77.2 75.6 78.8 764 848 794 838
5 BV epoch 70 62 86 17
€ o5 D 0 0 10 7
g
04 v 2 < Q
Predicted label
03
- Training accuracy
02 - \alidation accuracy
0 20 40 &0 80 100
Epochs
Loss function over epochs for 450x450 pixels images A1 8 4 0 0
7 —— Training loss function | CC_R MLOR CCLL MLO_L Right Left All
64 — ¥ohduon foss Tonoen T t t s P 11 0 validation accuracy (%) | 78.8 76.9 77.6 744
estset. z test accuracy (%) 729 754 746 686 797 746 771
g . BI R ADS g recall (%) 70.6 70.6 71.6 61.7 748 701 717
€4 Tl o 6 0 precision (%) 77.8 76.6 784 76.2 867 785 84.6
e BV epoch 70 62 86 17
g3
2 D 0 0 5 7
W L.
Predicted label

0 20 0 60 80 100
Epochs
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ResNet2

Input: 450x450x3
Without Dropout Test set: BIRADS

Accuracy over epochs for 450x450 pixels images

08
A{ 9 3 0 0
0.7 1
0.6 1
g el S8 3 6 1
034 = C 0 6 0
021 — Training accuracy
014 —— Validation accuracy o] 5 o " 5
0 20 20 &0 80 100
Epochs T T T T
v ? < Q
Loss function over epochs for 450x450 pixels images Predicted label
0 - Training loss function
- Validation loss function
8
| CC_R MLOR CCLL MLOL Right Left All
£ o validation accuracy (%) | 80.8 788 788 782
2 test accuracy (%) 771 712 746 763 771 788 805
g 47 recall (%) 77.9 71.1 74.7 74.2 763 758 769
precision (%) 78.7 69.2 76.6 80.0 780 832 812
% H BV epoch 71 28 88 80
041+ T T T s T T
0 20 40 60 80 100
Epochs
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ResNet3

Input: 450x450x1
With Dropout Test set: BIRADS

Accuracy over epochs for 450x450 pixels images

08 - WWI\V A{ 9 3 0 0
0.7
056 - /
= _ BA 0 1
§ 05 - 3
4 04 3
Pl o 0
03 -
0.2 4 - Training accuracy
011 —— Validation accuracy DA 0 0 3 9
0 20 2 60 80 100 . . . .
Epochs v 2 o o
Predicted label
Loss function over epochs for 450x450 pixels images
- Training loss function
—— Validation loss function
8
| CC_R MLOR CCL MLO_L Right Left All
£61 validation accuracy (%) | 795 765 769 763
2 test accuracy (%) 80.5 74.6 74.6 74.6 788 780 831
&4 recall (%) 81.6 74.7 74.7 70.1 7id AR and
precision (%) 81.7 73.0 783 74.9 815 8l6 879
2. M - A BV epoch 61 73 87 98
AN
3 @ & ® 1%
Epochs
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CNN opt. — Dataset size and Robustness

Horizontal flip for Data Augmentation

Doubled number of images for
each of the two projections

7s4  Without flip
771 (924 images)

(CC, MLO)
| right CC  right MLO Al
test accuracy (%) 79.9 69.4
recall (%) 76.8 64.9
precision (%) 83.1 66.6 76.9

| right CC  right MLO

All

test accuracy (%) 77.2 72.0
recall (%) 75.8 65.9
precision (%) 78.3 70.3

——  With flip
727 (1848 images)
76.1

Test on a different mammographic
system

* Small dataset size
* Different appearance

Class C:
Senograph
Giotto
Hologic

o | GIOTTO
test accuracy (%) 59.1
277 0 recall (%) 471
precision (%) 49.7

Predicted label
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Interpretable models

The interpretable CNN automatically assigns
each filter in a high conv-layer with an object
part during the learning process.

Interpretable Convolutional Neural Networks,
Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu
University of California, Los Angeles

. . .y e -R LU Loss for filter 1

This paper proposes a method to modify a traditional I s o e 2

. . . Loss for filter 3
convolutional neural network (CNN) into an interpretable CNN.

Traditional Interpretable

Conv-layer Conv-layer

Towards Robust Interpretability with Self-Explaining Neural
Networks, David Alvarez-Melis CSAIL, Tommi S. Jaakkola

o ( '1 - -
= - classilical
= loss [
L
z
. [:> | label
CI1ass 1aoci
~
ncept encoder h( - ;wp)

_Y_
relevanc arame tnzer @ - ;wy) aggregator g| - Wy

Self-explaining models in stages, progressively generalizing %, oo
. .r: . . e “+ __ - % @8 ®® cxplanation
linear classifiers to complex yet architecturally explicit models. o £ ‘ |:(> : ST
g .7 { hul,.ﬁu-l,J}f !
060
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Filters with 3 channels

channel O channel 1 channel 2

R e P R o B
el | W
e A et o MR
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Feature maps
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CAMs — Other projections

Left CC




CAMs — Other projections

Right MLO




CAMs — Other projections

LR

oL ES

Left MLO




CAMs — Image size comparison

right CC
projection

C class

right MLO
projection

B class

left MLO
projection

C class

left CC
projection

C class

450x450 650x650
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Explainability — Heatmaps (grad-CAM)
Number of channel e
comparison = ‘;I’“ i E

Misclassified examples

True label: A
Predicted label: B
0
True label: D
Predicted label: C .

left MLO
projection
D class ‘g

20

left CC

projection

C class t
—

1 channel 3 channels




Explainability — Normalization comparison

Bl B T B 2




Marching squares algorithm

1 1 1 1 1 Threshold 0 0 0O O O Binaryimageeo o o © @
1 2 3 2 1 \withiso-value oo 1 1 1 ( ‘tocels - OOO—9
1(3[3[3/1| => [0[1[1[1]0] = |¢+0+O+0+9
P A AR B 0 11| d.|:0 *TO—O——0O—@
L2 s3] A 0(0|0|0(O e o o o o
8 4
y 0O 50150,0, 0 Look-up table contour lines

Give everycella 1 2 ®5 Oy Og-Og @

number based on < o o o

which corners are => QoSO oY 7

true/false b 6§ GG/ ¢ ) .\ ——e

i i e Case0 Casel Case2 Case3
* o o o o N Y7 1

Look up the contour ° |/O_O_O\| °

li in the datab o o

;?135,;& oy meis- S | TR <:| ase4 Case5 Caseb6 Case7

the cell e F—w ° m 3

& e e o o o o I

Laok At the angmal 1|1 L 1 Case 8 Case 9 Case10 Case 11

values and use linear 1 1 S

interpolation to 1 1 * * ?

determine a ::>

more accurate position 1 1 ——=o

of all the line end-points Ll 1 B Case 12 Case 13 Case 14 Case 15
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Thresholding segmentation

Inverted Binary Thresholding is an operation that transforms a grayscale image to a binary image
according to the formula:

0 if src(x,y) > thresh
XY) = ‘
dst(x,y) { maxVal otherwise

If the intensity of the pixel src(x,y) is higher than thresh, then the new pixel intensity is set to 0.
Otherwise, it is set to MaxVal.

Otsu’s Binarization is a method that determines an optimal global threshold value from the image histogram.

Gaussian filtered Image

Histogram

Otsu's Thresholding

image
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Batch Normalization

Batch normalization layer normalizes the activations of the previous layer at each batch.

Input: Values of > over a mini-batch: B = {z, ,.};
Parameters to be learned: ~, 3
Output: {y;, = BN«,..i(l‘i)}

m

pB  — .Z:: i // mini-batch mean
2 B e 2 oy 8
oF + — Z(.l., 1s) // mini-batch variance
P I =5 // normalize
VOgTE€
Y; + 1%; + 8 = BN, 5(x;) J/ scale and shift
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Global Average Pooling (GAP)

Global Average Pooling is an operation that calculates the average output of each feature map in the
previous layer.

Fully Connected Layers Global Average Pooling

feature maps /

output nodes feature maps output nodes

f

O
ully connected) ()
layers O

L ') — O
averaging
concatenation
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Dense layer

A Dense layer is a regular densely-connected NN layer. It implements the operation:

output = activation((input x kernel) + bias)

|
E Input vector h

Input: GAP output tensor
Output: 4 classes

Weight W

1
i Output vector y
|

Softmax function: converts K-dimensional vector x containing real values to the same shaped vector of real
values in the range of (0; 1), whose sum is 1.
expr;

=
Y, exXpz;

=1

o(z); =

We apply the softmax function to the output of our convolutional network in order to convert the output to
the probability for each class.
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Categorical Cross-Entropy

Categorical crossentropy is a loss function.

&
CE = — E tilog(f(s:))

where tiand siare the ground truth and the CNN score for each class i in C.
f(si) refers to the activations applied to the scores before the CE Loss computation.

Categorical cross-entropy will compare the distribution of the predictions (the activations in the output layer,
one for each class) with the true distribution, where the probability of the class is a value between 0 and 1.

Cross-entropy loss increases as the predicted probability diverges from the actual label.
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