A deep Convolutional Neural Network classifier for breast density assessment: optimization and explainability

Dott.ssa Camilla Scapicchio Relatrice: Prof.ssa Maria Evelina Fantacci

25 Marzo 2021

Università di Pisa

Contents

INTRODUCTION

MATERIALS AND METHODS

DATA ANALYSIS AND RESULTS

CONCLUSIONS AND OUTLOOK

- Physical principles of mammography
- Breast density
- Deep learning and Convolutional Neural Networks
- Explainability and visualization
- Residual Neural Network (ResNet)
- Software and hardware
- 🕨 Data
- Goals and methods
- Preprocessing
- CNN optimization
- > Explainability
- Discussion
- Outlook

Physical principles of mammography

Mammography: low-X-ray energy examination for breast tissue characterization. **Screening program**: a procedure in which asymptomatic population groups are subjected to make an early diagnosis of a high social impact and a high-risk disease.

Breast density

Mammographic density: the relative amount of radiodense tissue elements compared with the amount of fatty tissue elements visible on a mammographic exam.

Personalized dosimetric index (RADIOMA Project)

A. C. Traino, D. Caramella, M. E. Fantacci et al., "Average absorbed breast dose in mammography: A new possible dose index matching the requirements of the european directive 2013/59/euratom", European radiology experimental, 2017.

Risk factor for breast cancer

K. Krishnan, L. Baglietto, et al., "Longitudinal study of mammographic density measures that predict breast cancer risk", Cancer Epidemiology and Prevention Biomarkers, 2017.

• Masking effect

INTRODUCTION

BOYD, Norman F., et al. Mammographic density and the risk and detection of breast cancer, *New England Journal of Medicine*, 2007.

Density standard: fifth edition (2013) of BIRADS (Breast Imaging Reporting and Data Systems) atlas.

CONCLUSIONS

E. Sickles, C. D'Orsi, L. Bassett, C. Appleton, W. Berg, and E. Burnside, "Acr bi-rads atlas", Breast Imaging Reporting and Data System, pp. 39–48, 2013.

DATA ANALYSIS AND RES.

CNN for breast density assessment: optimization and explainability

MAT. AND METH.

Deep learning

Deep learning: a subset of Machine Learning (ML) and the capability of an Artificial Intelligent (AI) system to learn from experience and understand the world in terms of a hierarchy of concepts, building these concepts on top of each other in a deep graph with many layers.

DATA ANALYSIS AND RES.

CONCLUSIONS

5/26

CNN for breast density assessment: optimization and explainability

MAT. AND METH.

INTRODUCTION

Convolutional Neural Networks

Convolutional Neural Network (CNN): a specialized kind of neural network based on convolutional layers for processing data that have a grid-like structure.

Explainability and Visualization

Explainability: qualitative understanding between the input and the response to build transparent models for which it is possible to explain why they predict what they predict.

CONCLUSIONS

Visualization: visual representation of patterns memorized by the CNN to identify salient regions that contribute most to prediction and understand the logic inside a CNN.

DATA ANALYSIS AND RES.

CNN for breast density assessment: optimization and explainability

MAT. AND METH.

INTRODUCTION

Explainability and Visualization

- Logistic regression classifier.
- Training set: pictures of wolves with snow in the background, pictures of huskies without snow.
- Prediction: «wolf» if there is snow, «husky» otherwise.

Correct but unreliable

MAT. AND METH.

you?: Explaining the predictions of any classifier", 2016.

CONCLUSIONS

DATA ANALYSIS AND RES.

8/26

CNN for breast density assessment: optimization and explainability

INTRODUCTION

Residual Neural Network (ResNet)

Keras: API written in Python on top of Tensorflow framework to train, fit and evaluate the CNN.

Hardware available by "Istituto Nazionale di Fisica Nucleare" (INFN) :

- CPUs: 2x 10 cores Intel Xeon E5-2640v4 @2.40 GHz
- RAM: 64 GB
- GPUs: 8x nVidia Tesla K80, with 2x GPUs Tesla GK210, 24 GB RAM and 2496 CUDA cores each

CONCLUSIONS

K Keras

INT.

MATERIALS AND METHODS

DATA ANALYSIS AND RES.

DL : data-driven approach

Lack of huge public mammograms dataset

Collected dataset: 1962 mammographic exams made us available by the "Azienda Ospedaliero-Universitaria Pisana" (AOUP) and collected by a radiologist, specialized in mammography, and a radiology technician.

AZIENDA OSPEDALIERO UNIVERSITARIA PISANA

- Exams acquired with 4 different mammographic systems.
- Negative exam reports.
- Ground truth: density class (A, B, C, D) label assigned to each exam by a radiologist.

DATA ANALYSIS AND RES.

• DICOM format.

	Α	В	С	D
N. of exams	264	611	888	199
Average age	67	63	58	53
Standard deviation	11	11	9	6
Median	68	62	56	52

CONCLUSIONS

INT.

CNN for breast density assessment: optimization and explainability

MATERIALS AND METHODS

Goals and methods

CONCLUSIONS

12/26

INT.

MAT. AND METH.

DATA ANALYSIS AND RESULTS

Goals and methods

Preprocessing – Preparatory steps

Preprocessing – Results

> Properly data preparation and exclusion of problematic exams.

Mammographic acquisition system	Original dataset size (No. of exams)	Pre-processed dataset size (No. of exams)		
GIOTTO IMAGE SDL	232	232		
SELENIA DIMENSIONS	50	49		
GE Senograph DS VERSION ADS 54.11	121	116		
GE Senograph DS VERSION ADS 54.11	1561	1546		

\geq Improvement in the classifier performance.

	First release (1561 exams)	With preprocessing (1546 exams)	Wu et al. (200000 exams)	Wu et al. (2000 exams)	Wu, et al. "Breast density classification with deep convolutional neural networks." 2018
test accuracy (%)	75.3	83.1	76.7	72.9	2010.
recall (%)	72.1	80.1			
precision (%)	76.4	87.9			

DATA ANALYSIS AND RESULTS

INT.

MAT. AND METH. CNN for breast density assessment: optimization and explainability CONCLUSIONS

Pectoral muscle segmentation

Pectoral muscle: mass of tissue on which the breast rests, it turns up in MLO mammograms views. It has pixel intensities and texture similar to that of breast dense tissues.

- Different instruments and settings.
- It doesn't happen in all the images.
- Extremely variable in size, intensity, shape and texture.

Segmentation algorithm

- Step 1) View selection
- Step 2) 8-bit transformation
- Step 3) Background removal
- Step 4) ROI detection
- **Step 5)** Noise reduction
- **Step 6)** ROI binarization and mask
- **Step 7)** Edge coordinates and linear fitting
- **Step 8)** Mean grey level replacement

About 300 problematic images segmented «by hand»

INT.

MAT. AND METH.

DATA ANALYSIS AND RESULTS

CONCLUSIONS

Training and generalization

Supervised learning: each example is a *pair* consisting of an input object and a desired output value. A supervised learning algorithm analyzes the training data and produces an inferred function, which can be used for mapping new examples.

Generalization: the ability to predict the right output on unobserved inputs.

Training and generalization

DATA ANALYSIS AND RESULTS

CNN for breast density assessment: optimization and explainability

MAT. AND METH.

INT.

CONCLUSIONS

Model fine-tuning: Dropout

Dropout: regularization method that consists in randomly setting of a fraction rate of input units to 0 at each update during training time, to prevent the model from overfitting.

batch_normalization_41: BatchNormalization

-	-	- Aug.	~ `	-
(b)	After	applying	dropout	t.

 \otimes

 \otimes

 \otimes

Dataset distribution

AOUP distribution: A: 12%, B:28%, C:50%, D:10% BIRADS distribution: A: 10%, B:40%, C:40%, D:10% Uniform distribution: A: 25%, B:25%, C:25%, D:25%

- Clinical database
- → Screening practice
- -> Further comparison

BIRADS density class distribution calculated on 3,865,070 screening mammography examinations over 13 years (1996-2008).

		AOUP Trainin	ng set	
		AOUP Test set	BIRADS Test set	Uniform Test se
	test accuracy (%)	76.6	76.3	72.2
ResNet1	recall (%)	72.0	75.8	72.2
	precision (%)	75.7	74.2	77.5
	test accuracy (%)	75.3	73.7	73.6
ResNet2	recall (%)	71.6	72.7	73.6
	precision (%)	77.2	74.6	80.3
	test accuracy (%)	78.5	79.7	73.6
ResNet3	recall (%)	74.2	77.9	73.6
	precision (%)	81.2	83.0	79.4
		BIRADS Traini	ing set	
		AOUP Test set	BIRADS Test set	Uniform Test set
	test accuracy (%)	75.3	77.1	65.3
ResNet1	recall (%)	66.7	71.7	65.3
	precision (%)	83.8	84.6	74.7
11.000.00	test accuracy (%)	76.6	80.5	75.0
ResNet2	recall (%)	71.9	76.9	75.0
	precision (%)	78.3	81.2	80.4
	test accuracy (%)	791	83.1	73.6

recall (%) 75.2 precision (%) 82.6

INT.

MAT. AND METH.

DATA ANALYSIS AND RESULTS CONCLUSIONS

ResNet3

20/26

73.6

79.0

80.1

87.9

Heatmaps (grad-CAM)

Heatmap: for a particular category indicates which regions of an image are being used by the model for discrimination among classes.

To check the classifier behavior
To improve the classifier performance

Gradient based Class Activation Map (grad-CAM): gradient calculation of the final classification score with respect to the final convolutional layer.

- $lpha_k^c$: weights of the final dense layer
- c : predicted class

Ak: feature maps of the last conv layer

Grad-CAM: Visual Explanationsfrom Deep Networks via Gradient-based Localization - R. R. Selvaraju et al. –2019 - ArXiv

DATA ANALYSIS AND RESULTS CONCLUSIONS

CNN for breast density assessment: optimization and explainability

MAT. AND METH.

INT.

Heatmaps (grad-CAM)

Qualitative evaluation: observing if they activate at the densest areas of the breast.

For the **A class** the classifier does not recognize any dense region and the maps activate almost always at the edge of the breast.

CONCLUSIONS

Explainability – Heatmaps (grad-CAM)

A

С

Normalization comparison

norm 1 : Sets each input

its std.

mean to 0 and

divides each input by

norm_1

norm_1

norm 2

norm_2

CONCLUSIONS

D

norm 1

norm 1

norm 2

norm_2 : Rescaling factor, multiplies the data by 1./255.

norm 1 : test accuracy = 79.7%, recall = 79.5%, precision = 78.3% norm 2 : test accuracy = 82.2%, recall = 78.0%, precision = 89.7%

INT.

MAT. AND METH.

DATA ANALYSIS AND RESULTS

23/26

Explainability – Heatmaps (grad-CAM)

DATA ANALYSIS AND RESULTS

Pectoral muscle segmentation

Non-segmented mammograms: test accuracy = 79.9%, recall = 78.1%, precision = 81.1%

Segmented mammograms: test accuracy = 82.0%, recall = 80.3%, precision = 83.3%

CONCLUSIONS

24/26

INT. | MAT. AND METH.

Conclusions

> A better understanding of how the developed BIRADS classifier works.

- Which factors most affect the classifier performance and accuracy results (data preparation, model architecture, classes distribution)
- > Systematic improvement of performance measures of accuracy, recall and precision.
- > Assessed trust in the model.
- Since it does not exist a well-established method for explainability, the work here described can be a starting point for a further study.

Outlook

> Ground truth: maximum agreement between more than one radiologist and segmented images.

- Dataset: increasing dataset size and more exams acquired with different mammographic systems.
- > To test other training conditions.
- > To transform the model in a mixed and controlled classifier.
- CAMs used as region proposal for features calculation, also for other models of breast density classifier. This region proposal could also be used on tumors after fine-tuning.

Camilla Scapicchio - PhD Student in Physics – University of Pisa

camillascapicchio@gmail.com camilla.scapicchio@phd.unipi.it

GRAZIE PER L'ATTENZIONE!

Istituto Nazionale di Fisica Nucleare

Backup Slides

Camilla Scapicchio

Università di Pisa 25 Marzo 2021

Photon energy and Dose

Mammographic systems and resolution

- GIOTTO Image SDL: matrix 2816 x 3584 pixel, pixel size 85 μm, spatial resolution 6 lp/mm (230 exams)
- Selenia Dimensions (Hologic): matrix 3328 x 4096 pixel, pixel size 70 μm, spatial resolution 2D 7.1 lp/mm, 3D 3.5 lp/mm (50 exams)
- GE Senograph DS: : matrix 2294 x 1914 pixel, pixel size 100 μm, spatial resolution 5 lp/mm (VERSION ADS 54.11: 121 exams, VERSION ADS 53.40: 1561 exams)

Deep learning in medical imaging

Dataset problem: Very few large public data sets available.

- > Legal and ethical issues regarding the use of clinical imaging data.
- > Specific annotations for the image data require domain expert.
- > Label noise: there is no consensus among the radiologists.

Convolution

$$C_{IK} = I \otimes K = (I * K)(i, j) = \sum_{m} \sum_{n} I(m, n) K(i - m, j - n)$$

Discrete convolution can be viewed as multiplication by a matrix.

Optimization

The dataset (x,y) is fixed.

The weights start out as random numbers and can change.

The score function computes class scores, stored in vector f.

The loss function contains: 1) The data loss, which computes the compatibility between the scores f and the labels y and 2) The regularization loss, which is only a function of the weights.

During Gradient Descent, we compute the gradient on the weights and use them to perform a parameter update.

Learning rate

Activation functions

Input and activation functions produce the single neuron output.

Leaky ReLU $\max(0.1x, x)$

 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

Stochastic Gradient Descent (SGD)

SGD is a Gradient Descent (GD) algorithm semplification.

$$w_{t+1} = w_t - \gamma \frac{1}{n} \sum_{i=1}^{N} \nabla_w E(z_i, w_t)$$

The gradient is calculated from a single random example zt.

$$w_{t+1} = w_t - \gamma_t \nabla_w E(z_t, w_t)$$

Backpropagation algorithm

Recursive application of «chain rule» in the graph.

$$x \in \mathbb{R}^{m}, y \in \mathbb{R}^{n}, g : \mathbb{R}^{m} \to \mathbb{R}^{n}, f : \mathbb{R}^{n} \to \mathbb{R}$$
. If $y = g(x)$ and $z = f(y)$ then:
$$\frac{\partial z}{\partial x_{i}} = \sum_{i} \frac{\partial z}{\partial y_{j}} \frac{\partial y_{j}}{\partial x_{i}}$$

ResNet architecture

Datasets

The exact number of exams within each dataset.

	Training set	Validation set	Test set
AOUP	1232 exams (A:142, B:337, C:611, D:142)	156 exams (A:20, B:45, C:74, D:17)	158 exams (A:20, B:46, C:75, D:17)
BIRADS	842 exams (A:84, B:337, C:337, D:84)		118 exams (A:12, B:47, C:47, D:12)
Uniform	564 exams (A:141, B:141, C:141, D:141)		72 exams (A:18, B:18, C:18, D:18)

	Training set	Validation set	Test set
Original dataset	924	156	134
New segmented dataset	910	153	128

Summary of performance improvement

Best performance metrics obtained as a result of the described analyses.

	First release	New results				
test accuracy (%)	77.3	83.1				
recall (%)	77.1	80.1				
precision (%)	78,6	87.9				
Lizzi et al., "Residual convolutional neural networks for breast density classication", in						

F. Lizzi et al., "Residual convolutional neural networks for breast density classication", in Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies -Volume 3: BIOINFORMATICS, INSTICC, SciTePress, 2019, pp. 258–263.

WARNING: with what reliability?

Wu, Nan, et al. "Breast density classification with deep convolutional neural networks.", 2018.

data	macAUC	top-1	top-2	top-3	superclass
1%	0.888	0.729	0.967	0.998	0.849
10%	0.907	0.745	0.976	0.999	0.856
100%	0.916	0.767	0.982	0.999	0.865

ResNet1

Input: 450x450x1 Without Dropout

	CC_R	MLO_R	CC_L	MLO_L	Right	Left	All
validation accuracy (%)	78.8	76.9	77.6	74.4			
test accuracy (%)	72.2	74.0	72.8	69.6	76.6	73.4	75.3
recall (%)	64.7	67.4	68.3	57.3	67.3	66.4	66.7
precision (%)	77.2	75.6	78.8	76.4	84.8	79.4	83.8
BV epoch	70	62	86	17			

	CC_R	MLO_R	CC_L	MLO_L	Right	Left	All
validation accuracy (%)	78.8	76.9	77.6	74.4			
test accuracy (%)	72.9	75.4	74.6	68.6	79.7	74.6	77.1
recall (%)	70.6	70.6	71.6	61.7	74.8	70.1	71.7
precision (%)	77.8	76.6	78.4	76.2	86.7	78.5	84.6
BV epoch	70	62	86	17			

ResNet2

Input: 450x450x3 Without Dropout

Test set: BIRADS

	CC_R	MLO_R	CC_L	MLO_L	Right	Left	All
validation accuracy (%)	80.8	78.8	78.8	78.2	101310121	N SCI 15	1003110
test accuracy (%)	77.1	71.2	74.6	76.3	77.1	78.8	80.5
recall (%)	77.9	71.1	74.7	74.2	76.3	75.8	76.9
precision (%)	78.7	69.2	76.6	80.0	78.0	83.2	81.2
BV epoch	71	28	88	80			

ResNet3

Input: 450x450x1 With Dropout

Loss function over epochs for 450x450 pixels images

Test set: BIRADS

	CC_R	MLO_R	CC_L	MLO_L	Right	Left	All
validation accuracy (%)	79.5	76.5	76.9	76.3			
test accuracy (%)	80.5	74.6	74.6	74.6	78.8	78.0	83.1
recall (%)	81.6	74.7	74.7	70.1	77.4	73.8	80.1
precision (%)	81.7	73.0	78.3	74.9	81.5	81.6	87.9
BV epoch	61	73	87	98			

CNN opt. – Dataset size and Robustness

Horizontal flip for Data Augmentation

Doubled number of images for each of the two projections (CC, MLO)

	right CC	right MLO	All
test accuracy (%)	79.9	69.4	78.4
recall (%)	76.8	64.9	77.1
precision (%)	83.1	66.6	76.9
Freedow			
I (//)			
F(,-)	right CC	right MLO	All
test accuracy (%)	right CC 77.2	right MLO 72.0	All 76.1
test accuracy (%) recall (%)	right CC 77.2 75.8	right MLO 72.0 65.9	All 76.1 73.7

Without flip (924 images)

With flip (1848 images)

Test on a different mammographic system

- Small dataset size
- Different appearance

Predicted label

Interpretable models

Interpretable Convolutional Neural Networks, Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu University of California, Los Angeles

This paper proposes a method to modify a traditional convolutional neural network (CNN) into an interpretable CNN.

The interpretable CNN automatically assigns each filter in a high conv-layer with an object part during the learning process.

Towards Robust Interpretability with Self-Explaining Neural Networks, David Alvarez-Melis CSAIL, Tommi S. Jaakkola

Self-explaining models in stages, progressively generalizing linear classifiers to complex yet architecturally explicit models.

Filters with 3 channels

Feature maps

В

THEFT С (*)(*)= = Filter 59 Filter ov Flore 53 Fibre 53 Fibre 62 Fibre 62 Fibre 63 Fibre 63 Fibre 63 Fibre 64 Fib 66 6 Filter 0 Filter 1 Filter 2 Filter 3 Α D (*)= 5.0 7.5 10.0 12.5 0.0 2.5 5.0 7.5 10.0 12.5 0.0 2.5 5.0 7.5 10.0 12.5 0.0 2.5 5.0 7.5 10.0 12.5 2.5 Filter 0 Filter 2 Filter 3 Filter 1 D 6 -0.0 2.5 5.0 7.5 10.0 12.5 0.0 2.5 5.0 7.5 10.0 12.5 0.0 2.5 5.0 7.5 10.0 12.5 0.0 2.5 5.0 7.5 10.0 12.5

CAMs – Other projections

А В С D

Left CC

CAMs – Other projections

А В С D

Right MLO

CAMs – Other projections

Left MLO

CAMs – Image size comparison

Explainability – Heatmaps (grad-CAM)

Explainability – Normalization comparison

norm_2

norm_1

Marching squares algorithm

Thresholding segmentation

Inverted Binary Thresholding is an operation that transforms a grayscale image to a binary image according to the formula:

 $\mathtt{dst}(x,y) = \left\{ \begin{array}{ll} 0 & \mathrm{if}\; \mathtt{src}(x,y) > \mathtt{thresh} \\ \mathtt{maxVal} & \mathrm{otherwise} \end{array} \right.$

If the intensity of the pixel src(x,y) is higher than thresh, then the new pixel intensity is set to 0. Otherwise, it is set to MaxVal.

Otsu's Binarization is a method that determines an optimal global threshold value from the image histogram.

Batch Normalization

Batch normalization layer normalizes the activations of the previous layer at each batch.

$\begin{array}{llllllllllllllllllllllllllllllllllll$					
$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$	// mini-batch mean				
$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$	// mini-batch variance				
$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$	// normalize				
$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i)$	// scale and shift				

Global Average Pooling (GAP)

Global Average Pooling is an operation that calculates the average output of each feature map in the previous layer.

Dense layer

A Dense layer is a regular densely-connected NN layer. It implements the operation:

output = activation((input x kernel) + bias)

Input: GAP output tensor Output: 4 classes

Softmax function: converts K-dimensional vector x containing real values to the same shaped vector of real values in the range of (0; 1), whose sum is 1.

$$\sigma(x)_i = \frac{\exp x_i}{\sum\limits_{j=1}^K \exp x_j}$$

We apply the softmax function to the output of our convolutional network in order to convert the output to the probability for each class.

Categorical Cross-Entropy

Categorical crossentropy is a loss function.

$$CE = -\sum_{i}^{C} t_i log(f(s_i))$$

where t_i and s_i are the ground truth and the CNN score for each class i in C. f(s_i) refers to the activations applied to the scores before the CE Loss computation.

Categorical cross-entropy will compare the distribution of the predictions (the activations in the output layer, one for each class) with the true distribution, where the probability of the class is a value between 0 and 1.

Cross-entropy loss increases as the predicted probability diverges from the actual label.