
ORNL is managed by UT-Battelle

for the US Department of Energy

EPICS

State Notation

Language (SNL),

“Sequencer”

Kay Kasemir,

SNS/ORNL

Many slides from
Andrew Johnson,
APS/ANL

Feb 2019

2

EPICS Sequencer

• Implementation of the state transition control model

• Transparently supports channel access conneciton
to external data
– Read connection state of PVs

– Get and put values

– Monitor value changes

• SNL – State Notation Language
– Produces compiled code

– Generates C code and supports insertion of manually crafted blocks
of code

• %% strcpy(seqg_var->stateName, "init");
%{

// multiple lines of c or c++ code
}%

3
3

IOC

Channel Access

LAN

Sequencer

Device Support

I/O Hardware

IOC

Database

• Database:
Data Flow,
mostly periodic
processing

• Sequencer:
State machine,
mostly
on-demand

Optional:
Sequencer runs as
standalone CA-Client

CA Client

Sequencer

4
4

State Machine 101

State A

State B

Event

Action

Transition

A to B

• System is in some state

• Events trigger transitions
to other states

• Actions may be
performed on transition

5

Example

5

6
6

Example

Start

Low vacuum

High vacuum

pressure < 5.1 uTorr

Open the valve, update pumps, …

pressure > 4.9 uTorr

Close the valve, update pumps, …

7
7

Example State Notation Language

state low_vacuum
{

when (pressure <= .0000049)
{

RoughPump = 0;
pvPut(RoughPump);
CryoPump = 1;
pvPut(CryoPump);
Valve = 1;
pvPut(Valve);

} state high_vacuum
}
state high_vacuum
{

…

State

Event

Action

Transition

8

How it works

State Notation Language

C Code

C Compiler

“snc”

Pre-compiler

Object code

9

Advantage

• Compiled code. Fast.

• Can call any C(++) code

• Easy connection to Channel Access and thus
Records

– Compared to custom CA client, device support, …

• Skeleton for event-driven State Machine

– Handles threading, event handling, …

10

Disadvantage

• Limited runtime debugging

– See current state, values of variables,
but not details of C code within actions

• Can call any C(++) code

– and shoot yourself in the foot

• Pre-compiler.
SNL error

→ SNC creates unreadable C code

→ Totally cryptic C compiler messages

• Risk of writing SNL code

1. Starts out easy

2. Evolves

3. Ends up as a convoluted mess

11

Should I use the Sequencer?

Good Reasons:

• Start-up, shut-down, fault
recovery, automated
calibration

• Stateful Problem

– My SNL has 20 states, 30
possible transitions,, and little C
code for each transition

• Cannot satisfy system
requirements with records

– CALC
CALCOUT
BO (momentary)

SEQ
Subroutine records

• State machine purpose is to
separate control flow and data
flow

Bad Reasons:

•PID control, interlocks

• Warning sign:

– My SNL code has 3 states with
2000 lines of C code

•I don’t want to deal with
records, I’m more comfortable
with C code

12
12

1-s1;5
PARK

1

2
3 4

9

10

11

5

6

7

8

12

13

14

15

16

17
Initialising

Parked
Misaligned

Stopped

M1STATE = OTHER / M1STATE = NOT_DOWN & EXTENDED /

M1STATE = DOWN & CENTRED & RETRACTED /

UNPARK_CMD /
REJECT_CMD

PARK_CMD /

Fault
M1STATE = RETRACTED & NOT_DOWN /

Raising

Deflating

Depressurising

Post-Parked

Manual-Mode

PRE-PARK_CHECKS = PASS /
PSS = OFF

;RETRACT_AXIAL_SUPPORTS

PARK_CMD /
PSS = ON

;MOVE_TO_PRE-PARK

POST-PARK_CHECKS = FAIL /
UNPARK_ALARM

PRE-PARK_CHECKS = FAIL /
PARK_ALARM

PARK-CMD /
PSS = ON

;AOS = OFF

;MOVE_TO_PRE-PARK

UNPARK_CMD /
REJECT_CMD

PARK_CMD /
PSS = ON

;MOVE_TO_PRE_PARK

Operating

UNPARK_CMD /
PSS = ON

;INFLATE_SEALS;

UNPARK_CMD /
MOVE_TO_NOP ;
INFLATE_SEALS;

Realigning

POST-PARK_CHECKS = PASS /
PSS = ON;
MOVE_TO_NOP ;
INFLATE_SEALS;

Inflating

Pressurising

Pre-Parked

Lowering

SEALS = INFLATED /
APSS = ON

APSS = PESSURISED /
AOS = ON ;PARK-CMD /

AOS = OFF

;MOVE_TO_PRE-PARK

APSS = DEPRESSURISED /
DEFLATE_SEALS

SEALS = DEFLATED /

IN_PRE-PARK_POSN /

IN_POST-PARK_POSN /

UNPARK_CMD /
PSS = ON;
MOVE_TO_POST-PARK

M1STATE = DOWN & CENTRED & RETRACTED /

INTERLOCK_RXD /
STOP_SUPPORTS

Interlocked INTERLOCK_REMOVED /

PSS_ON_CMD /
PSS =

ON

PSS_OFF_CMD /
PSS =

OFF

Use the sequencer

◼For sequencing

complex control tasks

◼E.g. parking and

unparking a telescope

mirror

Photograph courtesy of the Gemini Telescopes project

13

If you really want to use SNL

Good manual:

http://www-csr.bessy.de/control/SoftDist/sequencer/

Implement in small steps
– Code a little

– Compile, test

– Code a little more

– Compile, test

–This makes debugging viable

– Bisect new code into successively smaller sections to
find offending statements when diagnostic messages
are overly mysterious

http://www-csr.bessy.de/control/SoftDist/sequencer/

14

SNL Structure

program SomeName("macro=value")

/* Comments as in C */

/* Options */

/* Variables */

/* State Sets */

Program name!

Used in DBD
&

to launch the sequence.

15

SNL Options

option +r;

option -c;

Make “re-entrant”.

Should be the default.
Allows running more than one
copy (with different macros).

Start right away, do not await
connections.

Even with “+c”, the default,
PVs may disconnect

once you’re running..

16

SNL Structure

program SomeName("macro=value")

/* Comments as in C */

/* Options */

/* Variables */

/* State Sets */

17

Variables

double pressure;

assign pressure to "Tank1Coupler1PressureRB";

monitor pressure;

short RoughPump;

assign RoughPump to "Tank1Coupler1RoughPump";

string CurrentState;

assign CurrentState to ”{macro}:VacuumState";

int, short, long, char, float, double

Map to channel

Update with channel

string == char[40]
Replaced w/macro’s

value

18

Array Variables

double pressures[3];

assign pressures to

{

"Tank1Coupler1PressureRB",

"Tank1Coupler2PressureRB",

"Tank1Coupler3PressureRB”

};

monitor pressures;

short waveform[512];

assign waveform to "SomeWaveformPV";

monitor waveform;

Any but ‘string’

Map to channel(s!)

19

1

9

Event Flags

• Declaration:
evflag event_flag_name;

• Trigger on Channel Access updates
by synchronizing with monitored variable
sync var_name event_flag_name;

assign var1 “pvname1”;

monitor var1;

assign var2 “pvname2”

monitor var2;

sync var1 ef;

sync var2 ef;

• Communicate events between state sets with
efSet(), efTestAndClear(), ef*..

20

2

0

Event Flags

Multiple PVs may be sync’d with a
single evflag but a single PV may not be
sync’d with more than one evflag

– Allowed

• sync var1 ef1;

sync var2 ef1;

sync var3 ef2;

– Not allowed

• sync var1 ef1;

sync var2 ef1;

sync var3 ef2;

sync var1 ef2; # offending statement – attempt to
sync var1 with ef1 and ef2

21

SNL Structure

program SomeName("macro=value")

/* Comments as in C */

/* Options */

/* Variables */

/* State Sets */

22

State Sets

ss coupler_control
{

state initial{
when (pressure > .0000051){
} state low_vacuum
when (pressure <= .0000049){
} state high_vacuum

}
state high_vacuum{

when (pressure > .0000051){
} state low_vacuum

}
state low_vacuum{

when (pressure <= .0000049){
} state high_vacuum
when (delay(600.0)){
} state fault

}
state fault {
}

}

Starts in First state,
name does not matter

23

Events

• Variable value test

– Variables assigned to PVs and used in events MUST be monitor’ed if
their values are changed by external agents alone

when (pressure > .0000051)

{
/* Actions … */

} state low_vacuum

when (pressure < 0.000051 && whatever > 7)
{
} state high_vacuum

• Asynchronous pvGet or pvPut completion

when (pvGetComplete(someVar)) { …

when (pvPutComplete(someVar)) { …

24

Events..

• Timer expiration

when (delay(10.0)) # This is not an unconditional delay!
{ # It is a timeout that expires only when
} state timeout # other event conditions stay false for

the specified elapsed time
• Event flags

when (efTestAndClear(some_event_flag)) …
when (efTest(some_event_flag)) …

/* Meanwhile, in other state */
when (pressure < 0.000051 && whatever > 7)
{

efSet(some_event_flag);
} state high_vacuum

• Connection state changes

when (pvConnectCount() < pvChannelCount())
when (!pvConnected(some_variable))

25

Actions and Transitions

when (pressure > .0000051)
{

/* Set variable, then write to associated PV */
RoughPump = 1;
pvPut(RoughPump);

/* Can call most other C code */
printf("Set pump to %d\n",RoughPump);

} state low_vacuum

Action statements mostly resemble C code. Above, RoughPump is a state
machine variable. The SNL for the printf is pre-compiled into

printf("Set pump to %d\n", pVar->RoughPump);

SNC adds pVar-> to all state machine variables.

Sometimes inserting manually crafted code blocks is necessary
%{
/* Escape C code so that it’s not transformed */
static void some_method_that_I_need_to_define(double x);

}%

26

Walk through the SNL from
makeBaseApp –t example

configure/RELEASE or RELEASE.local
MODULES = /home/training/epics-train/tools

SNCSEQ = $(MODULES)/seq-2.2.6

Generated Makefile:
.._SRCS += sncProgram.st

sncExample.dbd
registrar(sncExampleRegistrar)

IOC st.cmd
seq sncExample, “user=me”

program sncExample

double v;

assign v to "{user}:aiExample";

monitor v;

ss ss1 {

state init {

when (delay(10)) {

printf("sncExample: Startup delay over\n");

} state low

}

state low {

when (v > 5.0) {

printf("sncExample: Changing to high\n");

} state high

}

state high {

when (v <= 5.0) {

printf("sncExample: Changing to low\n");

} state low

}

}

28

Sequencer Management and

Diagnostic Commands

• seq NameOfSequence

– Start sequence

• seqStop <thread id or name>

– Stop a sequence

• seqShow

– List all sequences with IDs and names

• seqShow <thread id or name>

– More detail for given thread

• seqChanShow <thread id or name>

– List variables of seq

29

Sequencer Management and

Diagnostic Commands…

• seqcar <level>

– Level 0 - show pv statuses

• Total programs=1, channels=18, connected=17, disconnected=1

– Level 1 – show disconnected pvs per program

• Program "sncExample“
Variable "highLev" not connected to PV "one:highLevel“

Total programs=1, channels=18, connected=17, disconnected=1

– Level 2 – show details for each pv by name

• Program "sncExample“
Variable "systemEnable" connected to PV "one:systemEnable“
Variable "pause" connected to PV "one:pause“
Variable "fillTimeout" connected to PV "one:fillTimeout“
.
.
.

30

More…

• Support for entry and exit blocks

• Assign PV names within code: pvAssign(..)

• Get Callback, Put Callback

• Checking status & severity of PVs

• syncQ to queue received Channel Access
updates

• and more…

31

Summary

• SNL and the EPICS sequencer is a powerful tool
with a rich feature set

• Very easy to implement EPICS state machines
with SNL

• Read the SNL manual

