
React Automation Studio: A New Web Application to Generate Graphical User Interface for
EPICS Based Control Systems

G. Savarese1, D. Marcato1, D. Bortolato1, F. Gelain1, G. Arena1, M. Roetta1, V. Martinelli1, E. Munaron 1

1 INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova), Italy.

INTRODUCTION

Control System Studio (CS-Studio) is the legacy
application being used at Laboratori Nazionali Legnaro
(LNL) to generate graphical user interfaces to control EPICS
based control systems. This application is widely used
in the laboratories and its strength resides in the ease of
use. Unfortunately, this application has performance and
feature drawbacks. The absence of a backend, executing
in background computationally expensive tasks, is a great
limit, in fact the application heavily slows down when there
are multiple instances with lot of connections to Process
Variables (PVs). But, one of the most relevant problem
is that, since 2015, we are blocked to an old version of
CS-Studio, no more supported by the community and using
an old version of JAVA. We are looking for a solution since
then.

AN ALTERNATIVE SOLUTION

At first we looked at CSS-Phoebus, a renewed version
of CS-Studio, that inherits all its simplicity. On the other
hand it inherits a portion of the problems already present in
CS-Studio such as the absence of a backend and the absence
of a subset of functionalities required by users (possibility
to use keyboard inputs on sliders). For these reasons we
decided to look for other solutions.

In late 2019, the control system group, found the existence
of a new project, developed and maintained by the iThemba
Labs: React Automation Studio (RAS). RAS is a web
application to generate graphical user interfaces to control
EPICS based control systems. RAS is meant to be used from
former CS-Studio users, so a large section of its features
emulates and improves CS-Studio ones. In 2020, during
the lock-down period, our group had the possibility to dive
into this project and start an informal collaboration with the
authors carrying significant improvements. Consequently
we made and participated to seminars to better learn the
technologies this project is based on.

RAS APPLICATION ARCHITECTURE

This application uses the docker technology. Docker
foresees the usage of containers, virtual machines seen as
processes from the hosting operating system, to create the
correct environment for each application main block.

Fig. 1. React-Automation-Studio software stack [1]

The main blocks are the REACT frontend and the python
backend.

The frontend server is written in REACT, the leading
javascript framework to write web interfaces. This
framework is widely supported and has a large set of
libraries to execute different tasks. Components are the
fundamental blocks when writing REACT pages. They can
be largely reused and can receive parameters called props to
customize their behavior.

RAS provides a set of standard components, called
widgets, managing PVs connection. They are based
on Material-UI components and make use of socket-io
connections to communicate with the backend.

To create user interfaces, developers must implement
their own components which may include widgets, custom
components or components belonging to other REACT
libraries. Developers can use them as black boxes, they can
implement their custom widgets or more complex pages.

The backend server main duty is to establish the
connection with the PVs. The backend is a python
flask application and, to manage asynchronous duplex
communications, it uses sockets. For each PV it creates a
room where clients can register and receives updates through
socket events. This way, different REACT components,



connected to the same PVs, register to the same room.
This approach reduces the number of channel access
communications and receives updates at the same time.

The frontend and the backend both live in their own
container. Other relevant blocks are: the container with
the style-guide, largely used when developing new pages
to inspect widgets props and behavior; the container with
a demo IOC, RAS demos use those PVs to show example
pages (those PVs are also accessible to developers but they
are not accessible outside that container); the MongoDB
Database to store persistent data (for example alarm history)
and more.

APPEARANCE AND FEATURES

RAS clients only need a browser and the correct url to
access the control pages.

During this year the control system group developed
some example pages with good results. The application
provides a large set of widgets similar to the ones provided
by CS-Studio (TextInputs, TextUpdates, Sliders, Gauges
and more...) but with new functionalities and a new
graphic. Moreover widgets appearance and features can be
customized by users.

Fig. 2. Stepper motor box control page developed by the control
system group

Good news come also for graphs based components.
These components extend the ones defined in the react-vis
library: lines, lines with error marks, scatter plots, horizontal
and vertical bars, area graphs and more.

In figure 2 and figure 3 we provide some example pages
developed by our group in this period to show the look and
feel of the new graphics. Finally the application already
provide different themes which can be automatically applied
without writing new code.

Fig. 3. Ionization control page developed by the control system
group

PROS AND CONS

As already anticipated this application has a lot of
advantages: it is written in REACT which is the leading
framework for web applications and it is widely supported;
clients require only a browser to access to the application;
it gives the possibility to perform auditing; developers
can create their custom widgets and share them with
the community; code re-usability thanks to components;
multiple themes and responsiveness to all resolutions and
more.

We can’t hide that the application currently has
some cons: there is not the possibility to drag
and drop components as for CS-Studio; it has some
performances issues; it requires knowledge about REACT
and Material-UI; still bugs to discover due to its youth.

FUTURE IMPROVEMENTS

The decision to emulate CS-Studio features has recently
lead the authors to develop an Alarm Handler (AH) system
and an Archiver system. They both uses a MongoDb
Database, a document oriented DB, to store data. MongoDb
privileges the data readability and simplicity. A new feature
of the AH will be the possibility to send emails or telegram
notifications.

In late 2020, our group suggested the extension of the
authentication system in order to integrate custom external
authentication and authorization systems. After different
meetings, discussions and a proof of concept, provided
by us, on how to integrate a custom OpenIDConnect
authentication system, the main team is currently integrating
our suggestions in the main project.

This project is only at the beginning of its life but we
have high expectations about its future; for this reason we
are planning to substitute the legacy CS-Studio with RAS.

[1] https://github.com/wduckitt/React-Automation-Studio.


