
14. Signal-background classification with Parametric
Neural Networks

Author(s)
How to Obtain Support
General Information
Software and Tools
Needed datasets
Short Description of the Use Case
How to execute it

Manual Setup
Docker Setup

References

Author(s)

Name Institution Mail Address Social Contacts

Luca Anzalone University of Bologna, INFN Sezione di Bologna luca.anzalone2@unibo.it N/A

Tommaso Diotalevi University of Bologna, INFN Sezione di Bologna tommaso.diotalevi@unibo.it N/A

How to Obtain Support

Mail luca.anzalone2@unibo.it

Social N/A

Jira N/A

General Information

ML/DL Technologies pNN classifier

Science Fields High Energy Physics

Difficulty low

Language English

Type runnable; fully annotated

Software and Tools

Programming Language Python

ML Toolset Keras, Tensorflow 2

Additional libraries scikit-learn, numpy, pandas, matplotlib, mlhep

Suggested Environments Google CoLab, Docker, own PC

Needed datasets

Data Creator

1.

2.

3.

1.
2.

Data Type Simulation

Data Size 2.4 + 1.2 Gb (840 + 440 Mb compressed)

Data Source HEPMASS (UCI ML repository); HEPMASS-IMB (Zenodo)

Short Description of the Use Case
The problem of is an important part of physics analyses, since an improved classifier helps to achieve more statistically signal-background classification
relevant results. The task is usually framed as , in which the positive class is represented by the signal, and the negative one by the binary classification
background since we want to reject it as much as possible while preserving (i.e. correctly classifying) the most signal we can.

Such problem can be solved either manually (with a by determining selection thresholds on multiple variables) or by means of cut-based approach
machine learning. The machine learning approach we are going to discuss is about (pNNs), which are a specialized kind of parametric neural networks
neural network classifier able to leverage a like the particle's mass. Such design enables the pNN to replace a set of classifiers each physics parameter,
trained at a particular value of the physics parameters: e.g. each model trained on a specific signal mass hypothesis.

Another benefit of pNNs is their ability to intermediate values of the physics parameter, in a natural and consistent way: neural smoothly interpolate
networks are notably smooth functions, but overfitting may prevent to achieve interpolation on some or all intermediate values of the parameter at all. In
this regard is usually useful to ensure enough regularization of the network: for example, we use a combination of dropout and weight decay.

Finally, the main design decisions to consider when defining a pNN, are:

Which to use, responsible of combining the input features (or intermediate output) with the given physics parameter.conditioning mechanism
How to to the background data samples.assign the physics parameter
How to about the data to improve the training of the model.leverage the domain knowledge

How to execute it
The full code that supports this tutorial is available at:

GitHub - Luca96/affine-parametric-networks/tutorial

The provided can be run, either: manually (requires installing the dependencies, and downloading the datasets), or through our tutorial notebook docker
 (configured with libraries and data).image

Manual Setup

Assuming a working Python setup, also having Jupyter notebook or lab (see) already installed:here

Clone the repository branch, and move within the folder: tutorial

git clone https://github.com/Luca96/affine-parametric-networks.git --branch tutorial
if on Google Colab, use %cd instead
cd affine-parametric-networks

Run the notebook either on your local machine, or via Google Colab: tutorial.ipynb

on a terminal:
jupyter notebook tutorial.ipynb

Copy the URL given in the terminal output on your browser.

Docker Setup

Assuming a working installation, on a terminal:Docker

Clone the branch and change directory, as described above at step 1.tutorial
Run the container (this also downloads the image which is about 4.3 Gb):

http://archive.ics.uci.edu/ml/datasets/hepmass
https://zenodo.org/record/6453048
https://github.com/Luca96/affine-parametric-networks/tree/tutorial
https://github.com/Luca96/affine-parametric-networks/blob/tutorial/tutorial.ipynb
https://hub.docker.com/r/tommaso93/affine-parametric-networks
https://hub.docker.com/r/tommaso93/affine-parametric-networks
https://jupyter.org/install
https://docs.docker.com/get-docker/

2.

3.

4.

docker run -it -d -v ${PWD}:/affine-parametric-networks -w /affine-parametric-networks -p 8888:8888 --
name tutorial tommaso93/affine-parametric-networks

Execute the image named : tutorial

docker exec -it tutorial jupyter notebook --ip 0.0.0.0 --no-browser

Copy the URL starting with "http://127.0.0.1" given in the terminal output, and paste it on your browser. In alternative, type "http://localhost:8888
/tree" on your browser, and then insert the token provided on the terminal output (the one starting with "?token="). Then run the tutorial.

notebook (skipping the installation of the dependencies - "Set-up" section).ipynb

References
Improving parametric neural networks for high-energy physics (and beyond) - MLST

Parameterized neural networks for high-energy physics - EPJ

Presentation made on : 13 Feb 2023 https://agenda.infn.it/event/34607/contributions/190747/attachments/101798/141949/pNNs_ML_INFN.pdf

https://iopscience.iop.org/article/10.1088/2632-2153/ac917c
https://link.springer.com/article/10.1140/epjc/s10052-016-4099-4
https://agenda.infn.it/event/34607/contributions/190747/attachments/101798/141949/pNNs_ML_INFN.pdf

	14. Signal-background classification with Parametric Neural Networks

