
1. Btagging in CMS

Author(s)
How to Obtain Support
General Information
Software and Tools
Needed datasets
Short Description of the Use Case
How to execute it

Way #1: Use Googe Colab
Way #2: Use Python from a ML-INFN Virtual machine
Way #3: Use Jupyter notebooks from a ML-INFN Virtual machine

Annotated Description
What is (jet) b-tagging?
Typical b-tagging algorithms @ CMS
A new b-tagging algorithm
The tutorial
Notebook #1: plot_NNinput.ipynb

Ntuple content kinematics
of particles / vertices
b tagging discriminataing variables
other kinematics
19. detailed truth
truth (6 categories)
alternative definition

Plotting a ROC
Notebook #2: plot_seedingTrackFeatures.ipynb
Notebook #3: keras_DNN.ipynb
Notebook #4: CNN1x1_btag.ipynb
Notebook #5: lstm_btag.ipynb

References
Attachments

Author(s)

Name Institution Mail Address Social Contacts

Leonardo Giannini INFN Sezione di Pisa / UCSD leonardo.giannini@cern.ch

Tommaso Boccali INFN Sezione di Pisa tommaso.boccali@pi.infn.it Skype: tomboc73; Hangouts: tommaso.boccali@gmail.com

How to Obtain Support

Mail tommaso.boccali@pi.infn.it, leonardo.giannini@cern.ch

Social Skype: tomboc73

Jira

General Information

ML/DL Technologies LSTM, CNN

Science Fields High Energy Physics

Difficulty Low

Language English

Type fully annotated and runnable

mailto:leonardo.giannini@cern.ch
mailto:tommaso.boccali@pi.infn.it
mailto:tommaso.boccali@pi.infn.it
mailto:nome.a.caso@li.infn.it
mailto:leonardo.giannini@cern.ch

Software and Tools

Programming Language Python

ML Toolset Keras + Tensorflow

Additional libraries uproot

Suggested Environments INFN-Cloud VM, bare Linux Node, Google CoLab

Needed datasets

Data Creator CMS Experiment

Data Type Simulation

Data Size 1 GB

Data Source INFN Pandora

Short Description of the Use Case
Jets originating form b quarks have peculiar characteristics that one can exploit to discriminate them from jets originating from light quarks and gluons, and
to better reconstruct their momentum. Both tasks have been dealt with using ML and are now tackled with Deep Learning techniques.

Two original Deep Learning applications, both involving b quark jets, are described in this chapter.

The first application described is the momentum regression, the second one is b-tagging algorithm which aims at processing lower level data, and lets a
DNN learn the secondary vertex information.

A combination of this tagger, called "DeepVertex", with another state-of-the-art tagger, called "DeepJet", which aims at a single particle and secondary
vertex description of the jet, is also presented.

Both the regression and the DeepVertex tagger improve on the previously developed benchmark algorithms applied in Physics Analysis by the CMS
collaboration.

Furthermore, the combination of "DeepVertex" and "DeepJet" reaches unprecedented performance in simulation.

The DNN regression was developed together with ETH collaborators working on the search for Higgs pairs, but was deployed in data specifically for the VH
(b \bar b) analysis. The DeepJet algorithm was developed in parallel to DeepVertex by other groups, while DeepVertex and the combinations are
presented in the thesis for the first time.

This hands on is largely inherited from an Hands-on by (CMS / UCSD / formerly INFN Pisa) for the at Leonardo Giannini Scientific Data Analysis School
Scuola Normale, November 2019.

A complete explanation of the tutorial is available for download . here

How to execute it

Way #1: Use Googe Colab

Google's Colaboratory () is tool offered by Google which offers a Jupyter like environment on a Google hosted machine, https://colab.research.google.com/
with some added features, like the possibility to attach a GPU or a TPU if needed.

You can access directly Colab by clicking on a .ipynb (Python Notebook) file. The notebooks for this tutorial can be found . The .ipynb files are also here
available in the next attachment.

drive-download-20201203T121930Z-001.zip

Presentation made on : 08 Feb 2021 https://agenda.infn.it/event/25728/contributions/129752/attachments/78751/101917/go

https://inspirehep.net/authors/1501359
https://www.sns.it/it/evento/scientific-data-analysis-school
https://confluence.infn.it/download/attachments/48038048/Machine_Learning_and_b-tagging_in_CMS.pdf
https://colab.research.google.com/
https://drive.google.com/drive/folders/1UMQuJNRG3q-_s69oy1laJ1JcXu-8XIgC
https://confluence.infn.it/download/attachments/48038048/drive-download-20201203T121930Z-001.zip?version=2&modificationDate=1606998181000&api=v2
https://agenda.infn.it/event/25728/contributions/129752/attachments/78751/101917/go

The input files are on Google Drive, and are automatically loaded by the notebooks. In case, they are also available and . here here

In the following the most important excerpts are described.

Way #2: Use Python from a ML-INFN Virtual machine

Another option is to use not Colab, but a real VM as made available by ML-INFN (LINK MISSING), or any properly configured host.

In that case, you can run the python code from the following link. You will also need to provide the input files and . here here

btagging_cms.tar.gz

The tar file, to be unpacked via

tar zxvf btagging_cms.tar.gz

contains 5 python scripts with the same name as the notebooks. It can be downloaded on the virtual machine via

wget https://confluence.infn.it/download/attachments/48038048/btagging_cms.tar.gz

The 2 input files can be downloaded as

davix-get test93_0_20000.npzhttps://pandora.infn.it/public/307caa/dl/test93_0_20000.npz
davix-get z test93_20000_40000.npzhttps://pandora.infn.it/public/ec5e6a/dl/test93_20000_40000.np

Way #3: Use Jupyter notebooks from a ML-INFN Virtual machine

This way is somehow intermediate between #1 and #2. It still uses a browser environment and a Jupyter notebook, but the processing engine is on a ML-
INFN instead of Google's public cloud.

You can get access to a Jupyter environment from XXX (same machine as #2), but instead from logging on that via ssh, you connect to hestname:8888
and provide the password you selected at creation time. At than point, you can upload the .ipynb notebooks from drive-download-20200317T155726Z-001.

.zip

Annotated Description

What is (jet) b-tagging?

It is the identification (or "tagging") of jets originating from bottom quark.

So what is a jet?

A collection of collimated particles originating from the hadronization of a quark or a gluon
Clustering particles and detector signal in jets is the way we reconstruct the originating partons

Why b-jet tagging?

Jets production is one of the most common processes at the LHC and a background for many analyses

https://pandora.infn.it/public/307caa
https://pandora.infn.it/public/ec5e6a
https://pandora.infn.it/public/307caa
https://pandora.infn.it/public/ec5e6a
https://confluence.infn.it/download/attachments/48038048/btagging_cms.tar.gz?version=2&modificationDate=1607005130000&api=v2
https://confluence.infn.it/download/attachments/48038048/btagging_cms.tar.gz?version=2&modificationDate=1607005130000&api=v2
https://confluence.infn.it/download/attachments/48038048/btagging_cms.tar.gz
https://pandora.infn.it/public/307caa/dl/test93_0_20000.npz
https://pandora.infn.it/public/ec5e6a/dl/test93_20000_40000.npz
https://confluence.infn.it/download/attachments/48038048/drive-download-20201203T121930Z-001.zip?version=2&modificationDate=1606998181000&api=v2
https://confluence.infn.it/download/attachments/48038048/drive-download-20201203T121930Z-001.zip?version=2&modificationDate=1606998181000&api=v2

b-jets production is suppressed compared to light quark/gluon jets
Final states with b-jets are interesting for many analyses:

Top quark
H-> bb
HH (bb+XX)
etc.

The so-called b-jets (coming from the hadronization of b quarks) have characteristics like:

sizeable lifetime (c ~ 500 m) decay length of a few mm when boosted
Significant Impact Parameter (IP)
Secondary vertex

Large mass (5 GeV)
High rate of semileptonic decays (25%)
High momentum transfer to the B hadron

b-tagging relies mostly on the reconstruction of the B hadrons decay products:

Efficient and robust tracking needed
Displaced tracks

with good IP resolution
Secondary vertex reconstruction

Typical b-tagging algorithms @ CMS

They

Can use single discriminating variables

Tracks IP, Secondary vertices

Can combine several discriminating variables with ML

ML is used to combine the information in an optimal way better performance
ML techniques are also more robust under different conditions (pileup, tracker detector, tracking etc.)

With Deep Learning we can also bypass some of the choices we make before optimization

using lower level inputs
It can be more flexible and ultimately better performing

Algorithmic performance is usually described in the form of ROC (Receiver Operating Characteristics) which has on one axis (x) the efficiency in correctly
tagging the signal (b-jets), and on the (y) axis the fraction of non signal jets incorrectly flagged as signal. In the b-tagging studies, unless specified
otherwise, "non signal jets" are defined as those coming from the hadronization of light quarks (uds) and gluons.

Jets from c quarks, which have intermediate values of lifetime with respect to b quarks, are usually treated in a separate way.

In this illustration form, an algorithm is better if the ROC curve is closer to the lower right corner of the picture

The current best performing algorithm in CMS is DeepCSV, which uses in input variables like:

3 categories: vertex - no vertex - pseudovertex depending on the reconstruction of a secondary decay vertex;
~ 20 “tagging variables”, among which the parameters of a track subset, the presence of secondary vertices and leptons.

A new b-tagging algorithm

The rest of the tutorial focuses on the development of a "toy but realistic DNN algorithm", which includes vertexing, instead of having vertexing results as
pre-computed input. Its inputs is, thus, mostly tracks. The real system, used by CMS, has better performance than the DeepCSV, with a (preliminary) ROC

In its architecture, 7414 inputs are used, mostly coming from clusters of neighbouring tracks around a 'seed" displaced track. 10 such displaced tracks are
considered at most, and 20 neighbouring tracks are in input for each of these. Each of the tracks is described via 36 parameters. On top on that, a few
global quantities are added. The parameter count is explicit in the next figure

Long-Short term memories (LSTM) are used in order to reduce the parameter count, since there is no reason to believe that any of the 20 tracks per
"seed" should be treated differently. After the application of the LSTM, convolutional filters and dense layers are used to are used scale to 4 output classes
("b","c", "uds", "gluon").

The tutorial

The tutorial includes , which can be run under Google's Colab. In order to be able and run and modify files, please use the link "Open 5 Jupyter Notebooks
in playground" as in the picture below, or generate a private copy of the notebook from the File menu.

Notebook #1: plot_NNinput.ipynb

This notebook loads a file containing precomputed features from MC events (from CMS), including reconstructed features and Monte Carlo Truth.

It contains 6 sets of variables, the first set "arr_0" being explicitly

f["arr_0"]

shape (20000, 52)

data relative to 20000 jets

52 variables per jet

Ntuple content kinematics

0. "jet_pt"
1. "jet_eta"

of particles / vertices

2. "nCpfcand"

3. "nNpfcand",

4. "nsv",

5. "npv",

6. "n_seeds",

b tagging discriminataing variables

7. "TagVarCSV_trackSumJetEtRatio"
8. "TagVarCSV_trackSumJetDeltaR",
9. "TagVarCSV_vertexCategory",
10. "TagVarCSV_trackSip2dValAboveCharm",
11. "TagVarCSV_trackSip2dSigAboveCharm",
12. "TagVarCSV_trackSip3dValAboveCharm",
13. "TagVarCSV_trackSip3dSigAboveCharm",
14. "TagVarCSV_jetNSelectedTracks",
15. "TagVarCSV_jetNTracksEtaRel",

other kinematics

16. "jet_corr_pt",

17. "jet_phi",

18. "jet_mass",

19. detailed truth

19. "isB",

https://drive.google.com/drive/folders/1UMQuJNRG3q-_s69oy1laJ1JcXu-8XIgC
https://drive.google.com/open?id=1lC0UlmUM5Zjw5rSfAPZNcxvqDOLA2J8d

20. "isGBB",

21. "isBB",

22. "isLeptonicB",

23. "isLeptonicB_C",

24. "isC",

25. "isGCC",

26. "isCC",

27. "isUD",

28. "isS",

29. "isG",

30. "isUndefined",

31. "isPhysB",

32. "isPhysGBB",

33. "isPhysBB",

34. "isPhysLeptonicB",

35. "isPhysLeptonicB_C",

36. "isPhysC",

37. "isPhysGCC",

38. "isPhysCC",

39. "isPhysUD",

40. "isPhysS",

41. "isPhysG",

42. "isPhysUndefined"

truth (6 categories)

43. "isB*1",
44. "isBB+isGBB",
45. "isLeptonicB+isLeptonicB_C",
46. "isC+isGCC+isCC",
47. "isUD+isS",
48. "isG*1",
49. "isUndefined*1",

truth as integer (used in the notebook)

50. "5x(isB+isBB+isGBB+isLeptonicB+isLeptonicB_C)+4x(isC+isGCC+isCC)+1x(isUD+isS)+21xisG+0xisUndefined",

alternative definition

51. "5x(isPhysB+isPhysBB+isPhysGBB+isPhysLeptonicB+isPhysLeptonicB_C)+4x(isPhysC+isPhysGCC+isPhysCC)+1x
(isPhysUD+isPhysS)+21xisPhysG+0xisPhysUndefined"

In particular, arr_0[:-2] (the "truth as integer" above) can be used as the "Monte Carlo" category.

You are shown how to make plots of the quantities per signal and background via the definition of the function

plotter_wbins, which uses the category definition

isB=jetvars[:,-2]==5
isC=jetvars[:,-2]==4
isL=jetvars[:,-2]==1
isG=jetvars[:,-2]==21

categories=[isB, isC, isL, isG]

Plotting a ROC

A ROC curve can be constructed, using a scan on a specific input (use TagVarCSV_trackSip2dSigAboveCharm here), with the code

from sklearn.metrics import roc_curve, auc

b vs light and gluon roc curve
B vs other categories -> we use isB

isBvsC = isB[isB+isC]
isBvsUSDG = isB[isB+isL+isG]

B vs ALL roc curve

fpr, tpr, threshold = roc_curve(isB,jetvars[:,11])
auc1 = auc(fpr, tpr)

B vs c

fpr2, tpr2, threshold = roc_curve(isBvsC,jetvars[:,11][isB+isC])
auc2 = auc(fpr2, tpr2)

B vs light/gluon

fpr3, tpr3, threshold = roc_curve(isBvsUSDG, jetvars[:,11][isB+isL+isG])
auc3 = auc(fpr3, tpr3)

print AUC

print (auc1, auc2, auc3)

pyplot.plot(tpr,fpr,label="vs all")
pyplot.plot(tpr2,fpr2,label="vs c")
pyplot.plot(tpr3,fpr3,label="vs l")
pyplot.xlabel("sig. efficiency")
pyplot.ylabel("bkg. mistag rate")
pyplot.ylim(0.000001,1)
pyplot.grid(True)
pyplot.legend(loc='lower right')

Notebook #2: plot_seedingTrackFeatures.ipynb

It is very similar to previous example, but looks into the other ntuples in the file, which we did not consider before

print(f["arr_0"].shape)
print(f["arr_1"].shape)
print(f["arr_2"].shape)
print(f["arr_3"].shape)
print(f["arr_4"].shape)
print(f["arr_5"].shape)

gives

(20000, 52)
(20000, 10, 21)
(20000, 25, 6)
(20000, 25, 16)
(20000, 4, 12)
(20000, 720, 10)

We already saw the first one, with 52 "features". The others have

10x21 -> (max) 10 tracks with impact parameter > 1 sigma : 21 variabili per track associated to the jet

16x25 -> (max) 16 charged particles : 25 variables each

6x25 -> (max) 6 neutral particles : 25 variables each

4x12 -> (max)4 secondary vertices associated to the jet : 12 variables each

720x10 -> low level information used in input to the DNN - foe arch of the (max 10) tracks with high impact
parameter, consider the 20 closest tracks .FIX

You can go on studying these features.

Notebook #3: keras_DNN.ipynb

This notebook trains a Dense network using the input features described in the previous sections.

First of all, which features to use in the network are selected

dataALL=f["arr_0"]

jetInfo=dataALL[:,[0,1,2,3,4,5,7,8,9,10,11,12,13,14,15]]

with the definitions explained in the next notebooks (for example, "1" is the eta of the jet).

With these, a dense network is created:

inputLayer = Input(shape=(15,))
x = BatchNormalization()(inputLayer)
####
x = Dense(30, activation='relu')(x)
x = Dropout(rate=dropoutRate)(x)
x = Dense(30, activation='relu')(x)
x = Dropout(rate=dropoutRate)(x)
####
x = Dense(20, activation='relu')(x)
x = Dropout(rate=dropoutRate)(x)
####
x = Dense(10, activation='relu')(x)
x = Dropout(rate=dropoutRate)(x)
####
outputLayer = Dense(6, activation='softmax')(x)
####
model = Model(inputs=inputLayer, outputs=outputLayer)

where 15 is the number of input features (please note that in the list above "6" is missing!), followed by

a normalization layer (to have uniform ranged numbners)
Dense and Dropout layers interleaved.

Dropout layers are used in general to avoid overtraining, by dropping different nodes at each training cycle.

After compilation, the Deep Neural Network geometry is

Dropout layers have no parameters to train; dense layers have a number of weights scaling as [Number of nodes in the previous layer +1 (the bias)]*
[Number of nodes in this layer].

For example, a a Dense layer with 30 nodes reading from a 30 nodes layer, will have (30+1)*30 = 930 parameters.

Training the model with

history = model.fit(jetInfo, jetCategories, epochs=n_epochs, batch_size=batch_size, verbose = 2,
 validation_split=0.3,
 callbacks = [
 EarlyStopping(monitor='val_loss', patience=10, verbose=1),
 ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=2, verbose=1),
 TerminateOnNaN()])

An useful view is the plot of the loss (on train and test samples) along the iterations.

from matplotlib import pyplot as plt
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.yscale('log')
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()

This is somehow counterintuitive with what we are usually taught: "loss will be lower on train than on validation samples, since the network tends to learn
the specific quirks of a sample – this is usually called overtraining". Here we see the opposite, how can it be?

The solution comes from the fact that indeed, precisely in order to avoid overtraining, we have inserted in the network above Dropout layers. Their function
is to randomly delete a fraction of the nodes and the connections, different in each training era, in order to "disturb" the convergence on the training
sample. When processing on the validation sample, these nodes are not removed, and the performance on validation can indeed be better than on the
(damaged on purpose) training sample.

We can use the second file as a validation set, to plot, for example, ROC curves. One builds a similar shaped set out of that

test=numpy.load("test93_20000_40000.npz")
testALL=test["arr_0"]
jetInfoTEST=testALL[:,[0,1,2,3,4,5,7,8,9,10,11,12,13,14,15]]
jetCategoriesTEST=testALL[:,-9:-3]

And uses the model to get a prediction

predict_test = model.predict(jetInfoTEST)

Check the notebook for the actual python, code, which results in a ROC like

The confusion matrix defines how good is the match between predicted and true categories.

Since in the output we have less categories than in the input (output is either b or not b), it is not strictly diagonal, and upon normalization shows

Without cuts, a "b" is recognized 57% of the time as a "b" and 43% as a light. Clearly, this is low figure but depends on the cut on the output.

Notebook #4: CNN1x1_btag.ipynb

The fourth notebook builds a convolutional NN using the same input features, PLUS the single tracks features in arr_1

dataJET=f["arr_0"]
jetInfo=dataJET[:,[0,1,2,3,4,5,7,8,9,10,11,12,13,14,15]]
jetCategories=dataJET[:,-9:-3]
Select addtional variables with more tracks from the 2nd ntuple
dataTRACKS=f["arr_1"]
Check shape
print(jetInfo.shape, jetCategories.shape, dataTRACKS.shape)

(20000, 15) (20000, 6) (20000, 10, 21)

We start adding 1x1 convolution

You need to load from tensorflow the needed packages

keras imports
from keras.models import Model
from keras.layers import Dense, Input, Conv2D, Dropout, Flatten, Concatenate, Reshape, BatchNormalization
from keras.layers import Conv1D

And then we can define the network

Inputs=[Input(shape=(15,))]
Inputs+=[Input(shape=(10,21))]
tracks=Inputs[1]
tracks = Conv1D(64, 1, kernel_initializer='lecun_uniform', activation='relu')(tracks)
tracks = Dropout(rate=dropoutRate)(tracks)
tracks = Conv1D(32, 1, kernel_initializer='lecun_uniform', activation='relu')(tracks)
tracks = Dropout(rate=dropoutRate)(tracks)
tracks = Conv1D(32, 1, kernel_initializer='lecun_uniform', activation='relu')(tracks)
tracks = Dropout(rate=dropoutRate)(tracks)
tracks = Conv1D(8, 1, kernel_initializer='lecun_uniform', activation='relu')(tracks)

tracks = Flatten()(tracks)

x = Concatenate()([Inputs[0] , tracks])

x= Dense(200, activation='relu',kernel_initializer='lecun_uniform')(x)
x = Dropout(rate=dropoutRate)(x)
x= Dense(100, activation='relu',kernel_initializer='lecun_uniform')(x)
x = Dropout(rate=dropoutRate)(x)
x= Dense(100, activation='relu',kernel_initializer='lecun_uniform')(x)
x = Dropout(rate=dropoutRate)(x)
x= Dense(100, activation='relu',kernel_initializer='lecun_uniform')(x)
x = Dropout(rate=dropoutRate)(x)
x= Dense(100, activation='relu',kernel_initializer='lecun_uniform')(x)
x = Dropout(rate=dropoutRate)(x)
x= Dense(100, activation='relu',kernel_initializer='lecun_uniform')(x)
x = Dropout(rate=dropoutRate)(x)

predictions = Dense(6, activation='softmax',kernel_initializer='lecun_uniform')(x)
model = Model(inputs=Inputs, outputs=predictions)

model.compile(loss='categorical_crossentropy', optimizer='adam')
model.summary()

The number of free parameters is much larger than before (85k vs 2k), due to the fact that we input larger dimensionality inputs (matrices instead of
vectors).

train
history = model.fit([jetInfo, dataTRACKS], jetCategories, epochs=n_epochs, batch_size=batch_size, verbose = 2,
 validation_split=0.3,
 callbacks = [
 EarlyStopping(monitor='val_loss', patience=10, verbose=1),
 ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=2, verbose=1),
 TerminateOnNaN()])
plot training history
from matplotlib import pyplot as plt
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.yscale('log')
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()

Using the test samples from the second file, one can produce the ROC curves and the confusion matrices as in the
previous example.

Notebook #5: lstm_btag.ipynb

The fifth notebook is very similar to the fourth, but uses a Long Short-Term Memory to input sequentially data instead of having a full matrix. The inputs are
the same

keras imports
from keras.models import Model
from keras.layers import Dense, Input, Conv2D, Dropout, Flatten, Concatenate, Reshape, BatchNormalization
from keras.layers import LSTM

Inputs=[Input(shape=(15,))]
Inputs+=[Input(shape=(10,21))]

tracks=Inputs[1]
tracks = LSTM(64)(tracks)

x = Concatenate()([Inputs[0] , tracks])
x= Dense(200, activation='relu',kernel_initializer='lecun_uniform')(x)
x = Dropout(rate=dropoutRate)(x)
x= Dense(100, activation='relu',kernel_initializer='lecun_uniform')(x)
x = Dropout(rate=dropoutRate)(x)
x= Dense(100, activation='relu',kernel_initializer='lecun_uniform')(x)
x = Dropout(rate=dropoutRate)(x)
x= Dense(100, activation='relu',kernel_initializer='lecun_uniform')(x)
x = Dropout(rate=dropoutRate)(x)
x= Dense(100, activation='relu',kernel_initializer='lecun_uniform')(x)
x = Dropout(rate=dropoutRate)(x)
x= Dense(100, activation='relu',kernel_initializer='lecun_uniform')(x)
x = Dropout(rate=dropoutRate)(x)

predictions = Dense(6, activation='softmax',kernel_initializer='lecun_uniform')(x)
model = Model(inputs=Inputs, outputs=predictions)

In this way, "tracks" are processed one at a time. Note that an LSTM is a complex node, with many weights, hence the total number of free parameters
does not necessarily decrease with respect to easier network topologies

model.compile(loss='categorical_crossentropy', optimizer='adam')
model.summary()

From this point on, the treatment of the test samples, ROC, and confusion matrices are the same as in the previous example.

References
Slides as presented at at Scuola Normale, November 2019: .Scientific Data Analysis School here
CMS btagging results: .here

https://www.sns.it/it/evento/scientific-data-analysis-school
https://confluence.infn.it/download/attachments/33161478/Machine%20Learning%20and%20b-tagging%20in%20CMS.pdf?version=1&modificationDate=1583162066000&api=v2
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBTV

Attachments

	1. Btagging in CMS

