
10. Image Inpainting tutorial: how to digitally restore
damaged images

Author(s)
How to Obtain Support
General Information
Software and Tools
Needed datasets
Short Description of the Use Case
How to execute it
Annotated Description
References
Attachments

Author(s)

Name Institution Mail
Address

Social Contacts

Alessandro
Bombini

Cultural Heritage Network (CHNet), INFN, Firenze on behalf of
European Science Cloud (EOSC) - Pillar

bombini@fi.
infn.it

Skype: ; Linkedin: https://it.linkedin.com/in/alessandro-bombini-
; Twitter: ; Hangouts:7929a2133

Skype: ; Linkedin: ; Twitter: ; Hangouts:

How to Obtain Support

Mail bombini@fi.infn.it

Social Skype: ; Linkedin: ; Twitter: ;
Hangouts:

Jira

General Information

ML/DL Technologies CNN U-Net

Science Fields Applied Physics

Difficulty Entry level

Language Eng

Type fully annoted, runnable

Software and Tools

Programming Language Python

ML Toolset Keras

Additional libraries Sci-kit image, PIL, OpenCV, matplotlib

Suggested Environments

Needed datasets

https://it.linkedin.com/in/alessandro-bombini-7929a2133
https://it.linkedin.com/in/alessandro-bombini-7929a2133
mailto:bombini@fi.infn.it

1.
2.
3.
4.
5.
6.
7.
8.
9.

1.
2.

Data Creator Toronto University

Data Type RGB Images

Data Size 175 MB

Data Source https://www.cs.toronto.edu/~kriz/cifar.html

Short Description of the Use Case
Inpainting is a conservation process where damaged, deteriorating, or missing parts of an artwork are filled in to present a complete image. This process
can be applied to both physical and digital art mediums such as oil or acrylic paintings, chemical photographic prints, 3-dimensional sculptures, or digital
images and video.

Here we show a dummy example of Image Inpainting by means of Convolutional Neural Network.

As a first example, we apply a digital damage to a set of 32x32 RGB images; the damage consists in adding a random number of black segments on top of
the RGB image (mimicking cuts on the surface).

After that, we train a 2D Convolutional Neural Network of the U-Net type. U-Nets are 2D CNN of the Encoder/Decoder type which are completely
symmetrical, i.e. if it has N layers, the k and the Nk layer have the same dimensions, and each layer of the encoding part is forwardly connected either with
the subsequent encoding layer and with the symmetrical decoding layer; this means that it can be graphically arranged in a U-shape, hence the name.

We will build a network this form:

 0. Input Layer

Conv2D x2 + MaxPool2D
Conv2D x2 + MaxPool2D
Conv2D x2 + MaxPool2D
Conv2D x2 + MaxPool2D
Conv2D x2 + Upsampling + Concatenate (4,5)
Conv2D x2 + Upsampling + Concatenate (3,6)
Conv2D x2 + Upsampling + Concatenate (2,7)
Conv2D x2 + Upsampling + Concatenate (1,8)
OutPut Layer to RGB

For the training of the 32x32 case we will use the CIFAR dataset (https://www.cs.toronto.edu/~kriz/cifar.html). It consists in 50.000 RGB 32 x 32 images.

We offer also the same model trained over 32x32 images and over 192x192 images, and we use transfer learning to apply the trained NN to different
damages.

Since INFN-CHNet (Cultural Heritage Network) is the network of the National Institute of Nuclear Physics (INFN) devoted to cultural heritage, we apply the
NN to paintings.

This is a dummy case of Digital Restoration, showing a glimpse of how NN can be applied to Physical Imaging of Cultural Heritages.

How to execute it
The example is available in the GitLab repository:

https://gitlab.com/alessandro.bombini.fi/image-inpainting-tutorial/

You need Jupyter notebook as well as all the Python packages necessary to run it.

Annotated Description
The repository is arranged as follows:

Folders:

pics/: contains the useful pics to be shown in the notebooks to describe it
images/ /: the images on which we apply the trained Neural Networknumbered_images
Model_data/: contains the .h5, .json files of the trained models, as well as pics of the history of the training.

Notebooks:

 Image_Inpaiting_Tutorial.ipynb: annotated notebook containing the construction and the training of the model

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://gitlab.com/alessandro.bombini.fi/image-inpainting-tutorial/

2.
3.

1.
2.

1.
2.
3.

open_model.ipynb: annoted notebook where the model trained over damaged 32x32 images is applied;
open_model_192x192.ipynb: annoted notebook where the model trained over damaged 192x192 images is applied;

Other:

 Tutorial Image Inpainting.pdf: pdf version of the slides used while presenting this notebook;
Tutorial Image Inpainting.pptx: powerpoint version of the slides used while presenting this notebook;

References
Cifar dataset: https://www.cs.toronto.edu/~kriz/cifar.html
Original UNet paper: https://arxiv.org/abs/1505.04597
Original ADAM optimazer paper: https://arxiv.org/abs/1412.6980

Attachments
https://gitlab.com/alessandro.bombini.fi/image-inpainting-tutorial/

https://www.cs.toronto.edu/~kriz/cifar.html
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1412.6980
https://gitlab.com/alessandro.bombini.fi/image-inpainting-tutorial/

	10. Image Inpainting tutorial: how to digitally restore damaged images

