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General Information

ML/DL Technologies CNN U-Net

Science Fields Applied Physics

Difficulty Entry level

Language Eng

Type fully annoted, runnable

Software and Tools

Programming Language Python

ML Toolset Keras

Additional libraries Sci-kit image, PIL, OpenCV, matplotlib

Suggested Environments

Needed datasets
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Data Creator Toronto University

Data Type RGB Images

Data Size 175 MB

Data Source https://www.cs.toronto.edu/~kriz/cifar.html

Short Description of the Use Case
Inpainting is a conservation process where damaged, deteriorating, or missing parts of an artwork are filled in to present a complete image. This process 
can be applied to both physical and digital art mediums such as oil or acrylic paintings, chemical photographic prints, 3-dimensional sculptures, or digital 
images and video.

Here we show a dummy example of Image Inpainting by means of Convolutional Neural Network.

As a first example, we apply a digital damage to a set of 32x32 RGB images; the damage consists in adding a random number of black segments on top of 
the RGB image (mimicking cuts on the surface).

After that, we train a 2D Convolutional Neural Network of the U-Net type. U-Nets are 2D CNN of the Encoder/Decoder type which are completely 
symmetrical, i.e. if it has N layers, the   k and the   Nk layer have the same dimensions, and each layer of the encoding part is forwardly connected either with  
the subsequent encoding layer and with the symmetrical decoding layer; this means that it can be graphically arranged in a U-shape, hence the name. 

We will build a network this form:

       0. Input Layer

Conv2D x2 + MaxPool2D
Conv2D x2 + MaxPool2D
Conv2D x2 + MaxPool2D
Conv2D x2 + MaxPool2D
Conv2D x2 + Upsampling + Concatenate (4,5)
Conv2D x2 + Upsampling + Concatenate (3,6)
Conv2D x2 + Upsampling + Concatenate (2,7)
Conv2D x2 + Upsampling + Concatenate (1,8)
OutPut Layer to RGB

For the training of the 32x32 case we will use the CIFAR dataset ( https://www.cs.toronto.edu/~kriz/cifar.html ). It consists in 50.000 RGB 32 x 32 images. 

We offer also the same model trained over 32x32 images and over 192x192 images, and we use transfer learning to apply the trained NN to different 
damages. 

Since INFN-CHNet (Cultural Heritage Network) is the network of the National Institute of Nuclear Physics (INFN) devoted to cultural heritage, we apply the 
NN to paintings. 

This is a dummy case of Digital Restoration, showing a glimpse of how NN can be applied to Physical Imaging of Cultural Heritages. 

How to execute it
The example is available in the GitLab repository:

https://gitlab.com/alessandro.bombini.fi/image-inpainting-tutorial/

You need Jupyter notebook as well as all the Python packages necessary to run it.

Annotated Description
The repository is arranged as follows:

Folders:

pics/: contains the useful pics to be shown in the notebooks to describe it
images/ /: the images on which we apply the trained Neural Networknumbered_images
Model_data/: contains the .h5, .json files of the trained models, as well as pics of the history of the training. 

Notebooks:

 Image_Inpaiting_Tutorial.ipynb: annotated notebook containing the construction and the training of the model

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://gitlab.com/alessandro.bombini.fi/image-inpainting-tutorial/
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open_model.ipynb: annoted notebook where the model trained over damaged 32x32 images is applied; 
open_model_192x192.ipynb: annoted notebook where the model trained over damaged 192x192 images is applied; 

Other:

 Tutorial Image Inpainting.pdf: pdf version of the slides used while presenting this notebook;
Tutorial Image Inpainting.pptx: powerpoint version of the slides used while presenting this notebook;
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