
11. Signal/background discrimination for the VBF Higgs
four lepton decay channel with the CMS experiment using
Machine Learning classification techniques

Author(s)
How to Obtain Support
General Information
Software and Tools
Needed datasets
Short Description of the Use Case

Multivariate Analysis and Machine learning algorithms: basic concepts
Introduction to the physics problem
Particle Physics basic concepts: the Standard Model and the Higgs boson
blocked URL

Experimental signature of Higgs boson in a particle detector
Data exploration

How to execute it
Use Googe Colab

What is Google Colab?
Open the Use Case Colab Notebook
Input files

Annotated Description
Load data using PANDAS data frames
Preparing input features for the ML algorithms
Dividing the data into testing and training dataset
Description of the Artificial Neural Network (ANN) model and KERAS API
Introduction to the Neural Network algorithm

The neuron/perceptron concept
Neural Network Topologies

Feed Forward Networks
Recurrent Neural Network

Dense Layer
Artificial Neural Network
Supervised Learning: the loss function
Metrics
Other parameters of a Neural Network
Applications in High Energy Physics

Usage of Keras API: basic concepts
Keras layers API
Callbacks API
Regularization layers : the dropout layer

Artificial Neural Network implementation
Description of the Random Forest (RF) and Scikit-learn library
What is Scikit-learn library?
Introduction to the Random Forest algorithm

Comparison with Neural Networks
Decision Tree
Pruning Tree
From tree to the forest
Feature importance

Optional exercise : Draw a decision tree
Random Forest implementation
Grid Search for Parameter estimation
Performance evaluation
ROC curve and rates definitions
Other metrics

Overfitting and test evaluation of an MVA model
Artificial Neural Network performance

blocked URL
Exercise 1 - Random Forest performance

blocked URL
Plot physics observables
Artificial Neural Network rates fixing an ANN score threshold from data frame
Exercise 2 - Random Forest rates fixing a RF score threshold from dataframe
Plot some physical quantities after that the event selection is applied
Optional Exercise 1 - Change the decay channel
Optional Exercise 2 - Merge the backgrounds
Machine Learning challenge

References
Attachments

Author(s)

Name Institution Mail Address Social Contacts

Brunella D'Anzi INFN Sezione di Bari brunella.d'anzi@cern.ch Skype: ; Linkedin:live:ary.d.anzi_1 brunella-d-anzi

Nicola De Filippis INFN Sezione di Bari nicola.defilippis@ba.infn.it

Domenico Diacono INFN Sezione di Bari domenico.diacono@ba.infn.it

Walaa Elmetenawee INFN Sezione di Bari walaa.elmetenawee@cern.ch

Giorgia Miniello INFN Sezione di Bari giorgia.miniello@ba.infn.it

Andre Sznajder Rio de Janeiro State University sznajder.andre@gmail.com

How to Obtain Support

Mail ,brunella.d'anzi@cern.ch giorgia.miniello@ba.infn.it

Social Skype: ; Linkedin: live:ary.d.anzi_1 brunella-d-anzi

General Information

ML/DL Technologies Artificial Neural Networks (ANNs), Random Forests (RFs)

Science Fields High Energy Physics

Difficulty Low

Language English

Type fully annotated and runnable

Software and Tools

Programming Language Python

ML Toolset Tensorflow, , Keras Scikit-learn

Additional libraries uproot, , , , ,NumPy pandas h5py seaborn matplotlib

Suggested Environments Google's Colaboratory

Needed datasets

Data Creator CMS Experiment

Data Type Simulation

Data Size 2 GB

Data Source Cloud@ReCaS-Bari

Short Description of the Use Case
In this exercise, we perform a binary classification task using 2018 CMS Monte Carlo (MC) simulated samples representing the Vector Boson Fusion
(VBF) Higgs boson production in the four-lepton final state signal and its main background processes. Two Machine Learning (ML) algorithms will be
implemented: an and a .Artificial Neural Network (ANN) Random Forest (RF)

Presentation made on : 26 Apr 2021 https://agenda.infn.it/event/26762/

mailto:brunella.d%27anzi@cern.ch
https://join.skype.com/invite/dg8LbwaakfIz
https://confluence.infn.it/www.linkedin.com/in/brunella-d-anzi
mailto:nicola.defilippis@ba.infn.it
mailto:domenico.diacono@ba.infn.it
mailto:walaa.elmetenawee@cern.ch
mailto:giorgia.miniello@ba.infn.it
mailto:sznajder.andre@gmail.com
mailto:brunella.d%27anzi@cern.ch
mailto:giorgia.miniello@ba.infn.it
https://join.skype.com/invite/dg8LbwaakfIz
https://confluence.infn.it/www.linkedin.com/in/brunella-d-anzi
https://www.tensorflow.org/guide
https://keras.io/about/
https://scikit-learn.org/stable/
https://uproot.readthedocs.io/en/latest/
https://numpy.org
https://pandas.pydata.org
https://www.h5py.org
https://seaborn.pydata.org
https://matplotlib.org
https://colab.research.google.com/notebooks/intro.ipynb
https://www.recas-bari.it/index.php/it/recas-bari-i-servizi-it/recas-bari-i-servizi/cloud-recas-software-as-a-service
https://agenda.infn.it/event/26762/

Learning Goals of the exercise

You will learn how a works and how a Machine Learning model must be implemented;Multivariate Analysis algorithm
you will acquire basic knowledge about the as it is described by the Standard Model. During the exercise, you will be invited Higgs boson physics
to plot some physical quantities in order to understand what is the underlying Particle Physics problem;
you will be invited to of the ANN and the RF algorithms in order to understand better what are the consequences in change hyperparameters
terms of the model performances;
you will understand that the choice of the is the key to the goodness of the algorithm since an optimal choice allows achieving the input variables
best possible performances;
moreover, you will have the possibility of changing the background datasets, the decay channels, and seeing how the performance of the ML
algorithms changes.

Multivariate Analysis and Machine learning algorithms: basic concepts

Multivariate Analysis algorithms receive as input a set of discriminating variables. Each variable alone does not allow to reach an optimal discrimination
power between two categories (signal and background). Therefore the algorithms compute an output that combines the input variables.

This is what every does. The discriminant output, also called , is used as a Multivariate Analysis (MVA) discriminator discriminator, score , or classifier
test statistic and is then adopted to perform the signal selection. It could be used as a variable on which a cut can be applied under a particular hypothesis
test.

In particular, Machine Learning tools are models which have enough capacity to define their own internal representation of data to accomplish two main
tasks : and make predictions without being explicitly programmed to do so.learning from data

blocked URL

In the case of binary classification, firstly the algorithm is with two datasets:trained

one that contains events distributed according to (in our case - there exist other conventions in actual physics analyses) the null signal hypothes
 ;is H0

another one according to the (in our case) .alternative background hypothesis H1

Then the algorithm must learn how to classify new datasets (the test dataset in our case).
This means that we have the same set of features (random variables) with their own distribution on the H and H hypotheses.0 1

To obtain a good ML classifier with high discriminating power, we will follow the following steps:

Training (learning): a discriminator is built by using all the input variables. Then, the parameters are iteratively modified by comparing the
discriminant output to the true label of the dataset (, we will use two of them). This phase is crucial: onesupervised machine learning algorithms
should tune the input variables and the parameters of the algorithm!

As an alternative, algorithms that group and find patterns in the data according to the observed distribution of the input data are called un
.supervised learning

A good habit is training multiple models with various hyperparameters on a “reduced” training set (i.e. the full training set subtracting the
so-called), and then select the model that performs best on the validation set.validation set
Once, the validation process is over, you can re-train the best model on the full training set (including the validation set), and this gives
you the final model.

Test: once the training has been performed, the discriminator score is computed in a for both H and H .separated, independent dataset 0 1
A comparison is made between test and training classifier and their performances (in terms of ROC curves) are evaluated.

If the test fails and the performance of the test and training are different, this could be a symptom of and our model can be overtraining
considered not good!

Introduction to the physics problem

In this section you will find the following subsections:

Particle Physics basic concepts: the Standard Model and the Higgs boson
you may skip it you have already basics knowledge about Particle Physics (cross-section,decay channels,Standard Model definitions, etc.).
Data exploration:
it is important that you pay attention to this section in order to understand all the next steps of the exercise.

Particle Physics basic concepts: the Standard Model and the Higgs boson

blocked URL

The of elementary particles represents our knowledge of the microscopic world. It describes the matter constituents (quarks and leptons)Standard Model
and their interactions (mediated by bosons), which are the electromagnetic, the weak, and the strong interactions.

https://raw.githubusercontent.com/bdanzi/Higgs_exercise/fbb053597adf9e950d7c7ccef4b72797d0a22f9d/Hypothesis_testing.png
https://camo.githubusercontent.com/f51cf993c2c6846d8f5b87c8a199e0b72043d5de/68747470733a2f2f7261772e67697468756275736572636f6e74656e742e636f6d2f6264616e7a692f48696767735f65786572636973652f6d61696e2f534d2e706e67

Among all these particles, the still represents a very peculiar case. It is the second heaviest known elementary particle (mass of 125 GeV)Higgs boson
after the top quark (175 GeV).

The ideal instrument for measuring the Higgs boson properties is a particle collider. The (LHC), situated nearby Geneva, betweenLarge Hadron Collider
France and Switzerland, is the largest proton-proton collider ever built on Earth. It consists of a 27 km circumference ring, where proton beams are
smashed at a center-of-mass energy of 13 TeV (99.999999% of the speed of light). At the LHC, 40 Million collisions / second occurs, providing an
enormous amount of data. Thanks to these data, and experiments discovered the missing piece of the Standard Model, the Higgs boson, inATLAS CMS
2012.

During a collision, the energy is so high that protons are "broken" into their fundamental components, i.e. and , which can interact together,quarks gluons
producing particles that we don't observe in our everyday life, such as the top quark. The production of a top quark is, by the way, a relatively "rare"
phenomenon, since there are other physical processes that occur more often, such as those initiated by strong interaction, producing lighter quarks (such
as up, down, strange quarks). In high-energy physics, we speak about the of a process. We say that the top quark production has a smallercross-section
cross-section than one of the productions of light quarks.

The experimental consequence is that distinguishing the decay products of a top quark from a light quark can be extremely difficult, due to the quite larger
probability to occur of the latter phenomenon.

Experimental signature of Higgs boson in a particle detector

Let's first understand what are the experimental signatures and how the detectors work at the LHC experiment. As an example, this is a sketch of the
Compact Muon Solenoid (CMS) detector.

blocked URL

A collider detector is organized in layers: each layer is able to distinguish and measure different particles and their properties. For example, the silicon
tracker detects each particle that is charged. The electromagnetic calorimeter detects photons and electrons. The hadronic calorimeter detects hadrons
(such as protons and neutrons). The muon chambers detect muons (that have a long lifetime and travel through the inner layers).

blocked URL

Our physics problem consists in detecting the so-called which is one of the possible Higgs boson's decays: its“golden decay channel” blocked URL
name is due to the fact that it has the clearest and cleanest signature of all the possible Higgs boson's decay modes. The decay chain is sketched here:
the Higgs boson decays into Z boson pairs, which in turn decay into a lepton pair (in the picture, muon-antimuon or electron-positron pairs). In this
exercise, we will use only datasets concerning the 4µ and the datasets about the are given to you to be analyzed as an decay channel 4e channel
optional exercise. At the LHC experiments, the decay channel is also widely analyzed.2e2mu

Data exploration

In this exercise, we are mainly interested in the following ROOT files (you may look at if prefer to learn more about which kind of objects youROOT File
can store in them):

VBF_HToZZTo4mu.root
GluGlueHtoZZTo4mu.root
ZZto4mu.root.

The VBF ROOT file contains the Higgs boson production (mass of 125 GeV) via the Vector Boson Fusion (VBF) mechanism - our blocked URL signal
 - that we want to discriminate from the so-called Gluon Gluon Fusion Higgs production events and the QCD process which are both events blocked URL ir

 (you can see an example of an irreducible background in the Feynmann diagram at the leading order (LO) in the picture below reducible backgrounds
and the cross-sections expected for the Higgs boson production processes and the branching ratios for its decay channels).
blocked URL
The processes are characterized by the same final-state particles but we can use the value of multiple variables,such as kinematic properties of the
particles, for classifying data into the two categories,signal and background.

The first one is the statistically less probable process that results in producing the Higgs boson at the Large Hadron Collider (LHC) experiments and it is
still understudies by the CMS collaboration.

blocked URL

blocked URL

In order to train our Machine Learning algorithms, we will look at the decay products of our physics problem. In our case we going to deal with:

electrically-charged leptons (electrons or muons, denoted with l)

https://camo.githubusercontent.com/109656a3ee20c773560a8ad2630345ef57560fe6/68747470733a2f2f7261772e67697468756275736572636f6e74656e742e636f6d2f6264616e7a692f48696767735f65786572636973652f6d61696e2f4550535f434d535f536c6963652e706e67
https://camo.githubusercontent.com/c076626a367be285df1e9e875a595e12f11664ee/68747470733a2f2f7261772e67697468756275736572636f6e74656e742e636f6d2f6264616e7a692f48696767735f65786572636973652f6d61696e2f53636865726d617461253230323032312d30342d3039253230616c6c6525323032332e34322e30362e706e67
https://render.githubusercontent.com/render/math?math=H%20%5Cto%20ZZ%5E%7B%2A%7D%20%5Cto%20l%5E%7B%2B%7Dl%5E%7B-%7Dl%27%5E%7B%2B%7Dl%27%5E%7B-%7D&mode=inline
https://root.cern/manual/storing_root_objects/
https://render.githubusercontent.com/render/math?math=q%5Cbar%20q%27%20%5Cto%20H%20q%5Cbar%20q%27%5Cto%20ZZ%5E%7B%28%2A%29%7D%20q%5Cbar%20q%27%5Cto%204%5Cmu%20q%5Cbar%20q%27&mode=inline
https://render.githubusercontent.com/render/math?math=gg%20%5Cto%20H%20%5Cto%20ZZ%5E%7B%28%2A%29%7D%20%5Cto%204%5Cmu&mode=inline
https://camo.githubusercontent.com/c3b37bfde46ee83bdd677da5412156d996042a6e/68747470733a2f2f7261772e67697468756275736572636f6e74656e742e636f6d2f6264616e7a692f48696767735f65786572636973652f6d61696e2f53636865726d617461253230323032312d30342d3130253230616c6c6525323030392e35322e34312e706e67
https://camo.githubusercontent.com/7ee01b41ab9766c54ef4285b9fddbba3f535e1e3/68747470733a2f2f7261772e67697468756275736572636f6e74656e742e636f6d2f6264616e7a692f48696767735f65786572636973652f6d61696e2f53636865726d617461253230323032312d30342d3230253230616c6c6525323031372e30392e33352e706e67
https://camo.githubusercontent.com/bb7bf2298986416308ed68270844d420f77a0b0b/68747470733a2f2f7261772e67697468756275736572636f6e74656e742e636f6d2f6264616e7a692f48696767735f65786572636973652f6d61696e2f53636865726d617461253230323032312d30342d3230253230616c6c6525323031372e31372e30312e706e67

particle jets (collimated streams of particles originating from quarks or gluons, denoted with j).

For each object, several kinetic variables are measured:

the momentum transverse to the beam direction (pt)
two angles (polar) and (azimuthal) - see picture below for the CMS reference frame used.
for convenience, at hadron colliders, the pseudorapidity , defined as =-ln(tan(/2)) is used instead of the polar angle .

We will use some of them for training our Machine Learning algorithms.

blocked URL

How to execute it

Use Googe Colab

What is Google Colab?

is a on Google-hosted machines, with some added features, like the Google's Colaboratory free online cloud-based Jupyter notebook environment
possibility to attach a GPU or a TPU if needed with 12 hours of continuous execution time. After that, the whole virtual machine is cleared and one has to
start again. The user can run multiple CPU, GPU, and TPU instances simultaneously, but the resources are shared between these instances.

Open the Use Case Colab Notebook

The notebook for this tutorial can be found . The .ipynb file is available in the and in this here Attachment section GitHub repository.

Indeed, the notebook can be opened by inserting the GitHub URL and clicking on the icon : bdanzi/Higgs_exercise VBF_exercise.ipynb

blocked URL

OR one can just click on the following link: .https://colab.research.google.com/drive/1hVA0E5kosM2gdFkJINb6WeVp5hjG1ML1?usp=sharing

Be sure to work on a of the notebook in Google Drive in both cases clicking on the icon as shown below:copy Copy to Drive blocked URL

In order to do this, you must have a personal Google account.

Input files

The datasets files are stored on Recas-Bari's ownCloud and are automatically loaded by the notebook. In case, they are also available here (four muons
decay channel)for the main exercise and for the optional exercise.here (four electrons decay channel)

In the following, the most important excerpts are described.

Annotated Description

Load data using PANDAS data frames

Now you can start using your data and load three different NumPy arrays! One corresponding to the VBF signal and the other twoblocked URL
corresponding to the production of the Higgs boson via the strong interaction (in jargon, QCD) background processes and thatblocked URL blocked URL
will be used as a merged background.

Moreover, you will look at the physical observables that you can use to train the ML algorithms.

https://camo.githubusercontent.com/4bf0aa888e7d3802696e7041f7afdf0a6660cb7c/68747470733a2f2f7261772e67697468756275736572636f6e74656e742e636f6d2f6264616e7a692f48696767735f65786572636973652f6d61696e2f53636865726d617461253230323032312d30342d3130253230616c6c6525323031312e30352e30302e706e67
https://colab.research.google.com/
https://recascloud.ba.infn.it/index.php/s/uLq4gu1TvjF8Wyr
https://confluence.infn.it/download/attachments/53906361/VBF_H_4l_ML_exercise.ipynb?version=1&modificationDate=1619435362000&api=v2
https://github.com/bdanzi/Higgs_exercise
https://github.com/bdanzi/Higgs_exercise/blob/main/Schermata%202021-04-19%20alle%2019.31.05.png?raw=true
https://colab.research.google.com/drive/1hVA0E5kosM2gdFkJINb6WeVp5hjG1ML1?usp=sharing
https://github.com/bdanzi/Higgs_exercise/blob/main/Schermata%202021-04-19%20alle%2019.32.00.png?raw=true
https://recascloud.ba.infn.it/index.php/s/Xc6efWFZ8TuUXZF
https://recascloud.ba.infn.it/index.php/s/Xc6efWFZ8TuUXZF
https://recascloud.ba.infn.it/index.php/s/Xc6efWFZ8TuUXZF
https://recascloud.ba.infn.it/index.php/s/zCCFhENzhDc7HUd
https://render.githubusercontent.com/render/math?math=q%5Cbar%20q%27%20%5Cto%20H%20q%5Cbar%20q%27%5Cto%20ZZ%5E%7B%28%2A%29%7D%20q%5Cbar%20q%27%5Cto%204%5Cmu%20q%5Cbar%20q%27&mode=inline
https://render.githubusercontent.com/render/math?math=gg%5Cto%20H%5Cto%20ZZ%5E%7B%28%2A%29%7D%5Cto4%5Cmu&mode=inline
https://render.githubusercontent.com/render/math?math=q%5Cbar%20q%27%5Cto%20H%5Cto%20ZZ%5E%7B%2A%7D%5Cto4%5Cmu&mode=inline

#import scientific libraries
 import uproot
 import numpy as np
 import pandas as pd
 import h5py
 import seaborn as sns

 from sklearn.utils import shuffle
 from sklearn.model_selection import train_test_split
 from sklearn.datasets import make_classification

 import tensorflow as tf
 from tensorflow import keras
 from tensorflow.keras.models import Sequential, Model
 from tensorflow.keras.optimizers import SGD, Adam, RMSprop, Adagrad, Adadelta
 from tensorflow.keras.layers import Input, Activation, Dense, Dropout
 from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau, ModelCheckpoint
 from tensorflow.keras import utils
 from tensorflow import random as tf_random
 from keras.utils import plot_model
 import random as python_random

Fix random seed for reproducibility

The below is necessary for starting Numpy generated random numbers
in a well-defined initial state.

 seed = 7
np.random.seed(seed)

The below is necessary for starting core Python generated random numbers
in a well-defined state.
python_random.seed(seed)

The below set_seed() will make random number generation
in the TensorFlow backend have a well-defined initial state.
For further details, see: https://www.tensorflow.org/api_docs/python/tf/random/set_seed
tf_random.set_seed(seed)

 treename = 'HZZ4LeptonsAnalysisReduced'
 filename = {}

 upfile = {}
 params = {}

 df = {}

Define what are the ROOT files we are interested in (for the two categories,
signal and background)

 filename['sig'] = 'VBF_HToZZTo4mu.root'
 filename['bkg_ggHtoZZto4mu'] = 'GluGluHToZZTo4mu.root'

 filename['bkg_ZZto4mu'] = 'ZZTo4mu.root'

Variables from Root Tree that must be copyed to PANDA dataframe (df)
 \VARS = ['f_run', 'f_event', 'f_weight',

 \'f_massjj', 'f_deltajj', 'f_mass4l', 'f_Z1mass' , 'f_Z2mass',
 \'f_lept1_pt','f_lept1_eta','f_lept1_phi',
 \'f_lept2_pt','f_lept2_eta','f_lept2_phi',
 \'f_lept3_pt','f_lept3_eta','f_lept3_phi',
 \'f_lept4_pt','f_lept4_eta','f_lept4_phi',
 \'f_jet1_pt','f_jet1_eta','f_jet1_phi',
 'f_jet2_pt','f_jet2_eta','f_jet2_phi']

#checking the dimensions of the df , 26 variables
 NDIM = len(VARS)

 print("Number of kinematic variables imported from the ROOT files = %d"% NDIM)

 upfile['sig'] = uproot.open(filename['sig'])
 upfile['bkg_ggHtoZZto4mu'] = uproot.open(filename['bkg_ggHtoZZto4mu'])

 upfile['bkg_ZZto4mu'] = uproot.open(filename['bkg_ZZto4mu'])
Number of kinematic variables imported from the ROOT files = 26

Let's see what you have uploaded in your Colab notebook!

Look at the signal and bkg events before applying physical requirement

 df['sig'] = pd.DataFrame(upfile['sig'][treename].arrays(VARS, library="np"),columns=VARS)
print(df['sig'].shape)

(24867, 26)

Comment: We have 24867 rows, i.e. 24867 different events, and 26 columns (whose meaning will be explained later).

Let's print out the first rows of this data set!

df['sig'].head()

f_run f_event f_weight f_massjj f_deltajj f_mass4l f_Z1mass f_Z2mass f_lept1_pt f_lept1_eta f_lept1_phi f_lept2_pt f_lept2_eta

0
1 385228 0.000176 667.271423 3.739947 124.966576 90.768616 20.508274 82.890457 0.822203 1.343706 65.486946 0.382922

1
1 385233 0.000127 129.085892 0.046317 120.231926 80.782318 34.261726 41.195362 -0.534245 2.802684 24.911942 -2.065928

2
1 385254 0.000037 285.165222 3.166899 125.254646 91.392693 25.695290 80.788002 0.943778 0.729632 35.549721 0.935241

3
1 385260 0.000043 52.006794 0.150803 125.067009 91.183708 19.631315 129.883423 0.235406 -1.729384 37.950790 1.226075

4
1 385263 0.000092 1044.083496 4.315164 124.305748 72.480515 43.826504 86.220734 -0.226653 0.117277 80.451378 -0.536749

The first 2 columns contain information that is provided by experiments at the LHC that will not be used in the training of our Machine Learning
algorithms, therefore we skip our explanation to the next columns.
The next variable is the . This corresponds to the probability of having that particular kind of physical process on the wholef_weights
experiment. Indeed, it is a product of Branching Ratio (BR), geometrical acceptance and kinematic phase-space (generator level). It is very
important for the training phase and you will use it later.
The variables , , , , and are named since they containf_massjj f_deltajj f_mass4l f_Z1mass f_Z2mass high-level features (event features)
overall information about the final-state particles (the mass of the two jets, their separation in space, the invariant mass of the four leptons, the
masses of the two Z bosons). Note that the m mass is lighter w.r.t. the m one. Why is that? In the Higgs boson production (hypothesis ofZ2 Z1
mass = 125 GeV) only one of the Z bosons is an that has the nominal mass of 91.18 GeV. The other one is a virtual (off-massactual particle
shell) particle.
The other columns represent the , the basic measurements which are made by thelow-level features (object kinematics observables)
detectors for the individual final state objects (in our case four charged leptons and jets) such as f_lept1(2,3,4)_pt(phi,eta)
corresponding to their transverse momentum pt and the spatial distribution of their tracks (,).

The same comments hold for the background datasets:

df['bkg_ggHtoZZto4mu'] = pd.DataFrame(upfile['bkg_ggHtoZZto4mu'][treename].arrays(VARS, library="np"),columns=VARS)

df['bkg_ggHtoZZto4mu'].head()
Out[]:

f_run f_event f_weight f_massjj f_deltajj f_mass4l f_Z1mass f_Z2mass f_lept1_pt f_lept1_eta f_lept1_phi f_lept2_pt f_lept2_eta

0
1 581632 0.000225 -999.0 -999.0 120.101105 88.262352 22.051540 57.572330 -0.433627 -0.886073 56.933735 0.496556

1
1 581659 0.000277 -999.0 -999.0 124.592812 82.174683 17.613417 50.365120 0.001362 0.933713 31.548225 0.598417

2
1 581671 0.000278 -999.0 -999.0 125.692230 79.915764 29.998011 72.355927 -0.238323 -2.335623 20.644920 -0.241560

3
1 581724 0.000336 -999.0 -999.0 125.027504 85.200958 23.440151 43.059235 0.759979 -1.714778 19.248983 0.535979

4
1 581744 0.000273 -999.0 -999.0 124.917282 65.971390 14.968305 52.585011 -0.656421 -2.933651 35.095982 -1.002568

df['bkg_ZZto4mu'] = pd.DataFrame(upfile['bkg_ZZto4mu'][treename].arrays(VARS, library="np"),columns=VARS)
df['bkg_ZZto4mu'].head()

f_run f_event f_weight f_massjj f_deltajj f_mass4l f_Z1mass f_Z2mass f_lept1_pt f_lept1_eta f_lept1_phi f_lept2_pt f_lept2_eta

0
1 1991117 0.001420 384.394165 0.235409 309.921478 93.538399 87.436043 84.918190 -0.073681 -1.339234 60.143539 -1.229701

1
1 1991192 0.000893 110.589844 0.956070 326.481903 92.948936 85.379288 124.270218 1.388811 -1.738097 87.379723 0.766540

2
1 1991331 0.000839 -999.000000 -999.000000 91.167046 56.161217 14.535084 25.241573 1.410529 2.080089 21.971258 1.465800

3
1 1991364 0.000906 -999.000000 -999.000000 323.428345 88.717270 94.940346 65.728729 -0.561113 2.596448 50.528595 2.227971

4
1 1991360 0.001034 -999.000000 -999.000000 274.207916 90.799271 90.156898 101.931305 0.828778 2.440133 89.171135 -0.052834

Let's merge our background processes together!
 df['bkg'] = pd.concat([df['bkg_ZZto4mu'],df['bkg_ggHtoZZto4mu']])

Let's shuffle them!
 df['bkg']= shuffle(df['bkg'])

Let's see its shape!
print(df['bkg'].shape)

(952342, 26)

Note that the background datasets seem to have a very large number of events! Is that true? Do all physical variables have meaningful values? Let's make
physical selection requirements!

Remove undefined variable entries VARS[i] <= -999

 for i in range(NDIM):
 df['sig'] = df['sig'][(df['sig'][VARS[i]] > -999)]
 df['bkg']= df['bkg'][(df['bkg'][VARS[i]] > -999)]

Add the columnisSignal to the dataframe containing the truth information
i.e. it tells if that particular event is signal (isSignal=1) or background (isSignal=0)

 df['sig']['isSignal'] = np.ones(len(df['sig']))
 df['bkg']['isSignal'] = np.zeros(len(df['bkg']))

 print("Number of Signal events = %d " %len(df['sig']['isSignal']))
 print("Number of Background events = %d " %len(df['bkg']['isSignal']))

Number of Signal events = 14260
Number of Background events = 100724
#Showing that the variable isSignal is correctly assigned for VBF signal events
print(df['sig']['isSignal'])

0 1.0
1 1.0
2 1.0
3 1.0
4 1.0
 ...
24858 1.0
24859 1.0
24860 1.0
24861 1.0
24862 1.0
Name: isSignal, Length: 14260, dtype: float64

Showing that the variable isSignal is correctly assigned for bkg events
Some events are missing because of the selection. So we do not have in total 134682
background events anymore!
print(df['bkg']['isSignal'])

42646 0.0
619246 0.0
360856 0.0
727095 0.0
8984 0.0
 ...
551642 0.0
315737 0.0
759363 0.0
535030 0.0
189636 0.0
Name: isSignal, Length: 100724, dtype: float64

Let's see in which way we have to use the variable!f_weight

Renormalizes the events weights to give unit sum in the signal and background dataframes
This is necessary for the ML algorithms to learn signal and background
in the same proportion,independently of number of events
and absolute weights of events in each sample of events!
The relative contributions of each background process is retained - so the classifier
learns to focus more on the importance backgrounds, and the background matches the data
shape - but overall signal and background have equal importance (the classifier
learns to identify signal and background equally well).
In the pandas technical vocabolary axis=0 stands for columns, axis=1 for rows.

df['sig']['f_weight']=df['sig']['f_weight']/df['sig']['f_weight'].sum(axis=0)
df['bkg']['f_weight']=df['bkg']['f_weight']/df['bkg']['f_weight'].sum(axis=0)

Note: Number of events remain unchanged after this "normalization procedure"
 print("Number SIG events=", len(df['sig']['f_weight']))
 print("Number BKG events=", len(df['bkg']['f_weight']))

Number SIG events= 14260
Number BKG events= 100724

Let's merge our signal and background events!

Concatenate the signal and background dfs in a single data frame
 df_all = pd.concat([df['sig'],df['bkg']])

Random shuffles the data set to mix signal and background events
before the splitting between train and test datasets

 df_all = shuffle(df_all)

Preparing input features for the ML algorithms

1.
2.

We have our datasets ready to train our ML algorithm! Before doing that, we have to decide which input variables have to be passed to the algorithm to let
the model distinguish between signal and background events.

We can use:

The , , , , and .five high-level input variables f_massjj f_deltajj f_mass4l f_Z1mass f_Z2mass
The 18 kinematic variables characterize the four-lepton + two jest final states objects.

To make the best choice, we can look at the two sets of correlation plots - the so-called using the - among the featuresscatter plots seaborn library
available and see which set captures better the differences between signal and background events.

Note: this operation is quite long for both the sets since we are dealing with quite a lots of events. Skip the following two code cells and trust us in using
the high level features for building your ML models! Indeed, we will obtain better discriminators' performance using high-level features. You can always
return to this part of the exercise and try to use the low level features.

It will take a while (5 minutes), you can skip it as said before.
We leave you the output of this code cell using a .png format
VAR = ['f_massjj', 'f_deltajj', 'f_mass4l', 'f_Z1mass' , 'f_Z2mass', 'isSignal']
sns.pairplot(data=df_all.filter(VAR), hue='isSignal' , kind='scatter', diag_kind='auto');

blocked URL

It will take a while (1 hour). Skip it!
We leave you the output of this code cell using a .png format

NN_VARS = ['f_lept1_pt','f_lept1_eta','f_lept1_phi', \
'f_lept2_pt','f_lept2_eta','f_lept2_phi', \
'f_lept3_pt','f_lept3_eta','f_lept3_phi', \
'f_lept4_pt','f_lept4_eta','f_lept4_phi', \
'f_jet1_pt','f_jet1_eta','f_jet1_phi', \
'f_jet2_pt','f_jet2_eta','f_jet2_phi', 'isSignal']
sns.pairplot(data=df_all.filter(NN_VARS), hue='isSignal' , kind='scatter', diag_kind='auto');

blocked URL

Filter dataframe leaving just the Neural Network and Random Forest input variables

 NN_VARS= ['f_massjj', 'f_deltajj', 'f_mass4l', 'f_Z1mass' , 'f_Z2mass']
NN_VARS = ['f_lept1_pt','f_lept1_eta','f_lept1_phi', \
'f_lept2_pt','f_lept2_eta','f_lept2_phi', \
'f_lept3_pt','f_lept3_eta','f_lept3_phi', \
'f_lept4_pt','f_lept4_eta','f_lept4_phi', \
'f_jet1_pt','f_jet1_eta','f_jet1_phi', \
'f_jet2_pt','f_jet2_eta','f_jet2_phi']

 df_input = df_all.filter(NN_VARS)
 df_target = df_all.filter(['isSignal']) # flag
 df_weights = df_all.filter(['f_weight'])

the weights are also important to be given as input to the training

Transform dataframes to numpy arrays of float32
(X->NN input , Y->NN target output , W-> event weights)

NINPUT=len(NN_VARS)
print("Number NN input variables=",NINPUT)
print("NN input variables=",NN_VARS)
 X = np.asarray(df_input.values).astype(np.float32)
 Y = np.asarray(df_target.values).astype(np.float32)
 W = np.asarray(df_weights.values).astype(np.float32)
print(X.shape)
print(Y.shape)
print(W.shape)
print('\n')

Number NN input variables= 5
NN input variables= ['f_massjj', 'f_deltajj', 'f_mass4l', 'f_Z1mass', 'f_Z2mass']
(114984, 5)
(114984, 1)
(114984, 1)

Dividing the data into testing and training dataset

You can split now the datasets into two parts (one for the training and validation steps and one for testing phase).

Question to students: Have a look to the parameter setting . Why did we choose that small fraction of events to be used for the testing phase?test_size

Classical way to proceed, using a scikit-learn algorithm:

https://raw.githubusercontent.com/bdanzi/Higgs_exercise/main/Schermata%202021-04-20%20alle%2009.30.43.png
https://raw.githubusercontent.com/bdanzi/Higgs_exercise/main/Schermata%202021-04-20%20alle%2010.35.01.png

X_train_val, X_test, Y_train_val , Y_test , W_train_val , W_test =
train_test_split(X, Y, W , test_size=0.2,shuffle=None,stratify=None)

Alternative way, the one that we chose in order to study the model's performance
with ease (with an analogous procedure used by TMVA in ROOT framework)
to keep information about the flag isSignal in both training and test steps.

 size= int(len(X[:,0]))
 test_size = int(0.2*len(X[:,0]))

print('X (features) before splitting')
print('\n')
print(X.shape)
print('X (features) splitting between test and training')

 X_test= X[0:test_size+1,:]
print('Test:')
print(X_test.shape)

 X_train_val= X[test_size+1:len(X[:,0]),:]
print('Training:')
print(X_train_val.shape)
print('\n')
print('Y (target) before splitting')
print('\n')
print(Y.shape)
print('Y (target) splitting between test and training ')

 Y_test= Y[0:test_size+1,:]
print('Test:')
print(Y_test.shape)

 Y_train_val= Y[test_size+1:len(Y[:,0]),:]
print('Training:')
print(Y_train_val.shape)
print('\n')
print('W (weights) before splitting')
print('\n')
print(W.shape)
print('W (weights) splitting between test and training ')

 W_test= W[0:test_size+1,:]
print('Test:')
print(W_test.shape)

 W_train_val= W[test_size+1:len(W[:,0]),:]
print('Training:')
print(W_train_val.shape)
print('\n')

X (features) before splitting
(114984, 5)
X (features) splitting between test and training
Test:
(22997, 5)
Training:
(91987, 5)
Y (target) before splitting
(114984, 1)
Y (target) splitting between test and training
Test:
(22997, 1)
Training:
(91987, 1)
W (weights) before splitting
(114984, 1)
W (weights) splitting between test and training
Test:
(22997, 1)
Training:
(91987, 1)

Description of the Artificial Neural Network (ANN) model and KERAS API

In this section you will find the following subsections:

Introduction to the Neural Network algorithm
If you have the knowledge about ANN you may skip it.
Usage of Keras API: basic concepts
Here you find concepts that are useful for the ANN implementation using KERAS API (call functions, metrics etc.).

There are three ways to create Keras models:

The Sequential model, which is very straightforward (a simple list of layers), but is limited to single-input, single-output stacks of layers (as the
name gives away).
The Functional API, which is an easy-to-use, fully-featured API that supports arbitrary model architectures. For most people and most use
cases, this is what you should be using. This is the Keras "industry-strength" model. We will use it.
Model subclassing, where you implement everything from scratch on your own. Use this if you have complex, out-of-the-box research use cases.

Introduction to the Neural Network algorithm

A Neural Network (NN) is a biology-inspired analytical model, but not a bio-mimetic one. It is formed by a network of basic elements called or neurons perc
 (see the picture below), which receive input, change their state according to the input and produce an output.eptrons

The neuron/perceptron concept

The perceptron, while it has a simple structure, has the ability to learn and solve very complex problems.

It takes the inputs which feed into the perceptrons, multiplies them by their weights, and computes the sum. In the first iteration the weights are
set randomly.
It adds the number one, multiplied by a “bias weight”.
It feeds the sum through the activation function in a simple perceptron system, the activation function is a step function.
The result of the step function is the neuron output.

Neural Network Topologies

A Neural Networks (NN) can be classified according to the type of neuron interconnections and the flow of information.

Feed Forward Networks

blocked URL
A feedforward NN is a neural network where connections between the nodes do not form a cycle. In a feed-forward network information always moves one
direction, from input to output, and it never goes backward. Feedforward NN can be viewed as mathematical models of a function .blocked URL

Recurrent Neural Network

blocked URL
A Recurrent Neural Network (RNN) is the one that allows connections between nodes in the same layer, among each other or with previous layers.

Unlike feedforward neural networks, RNNs can use their internal state (memory) to process sequential input data.

Dense Layer

A Neural Network layer is called a dense layer to indicate that it’s fully connected.

Information about the Neural Network architectures can be found here: https://www.asimovinstitute.org/neural-network-zoo/

Artificial Neural Network

The discriminant output is computed by combining the response of multiple nodes, each representing a single neuron cell. Nodes are arranged into layers.

In an ANN the input variable values are passed to a first input layer, whose output is passed as input to the next layer, and so on.blocked URL

The last output layer usually consists of a single node that provides the discriminant output. Intermediate layers between the input and the output layers
are called hidden layers. Usually, if a Neural Network has more than one hidden layer is called and theoretically it is able to do theDeep Neural Network
feature extraction by itself (it becomes a Deep Learning algorithm).

Such a structure is also called (MLP, see the picture).Feedforward Multilayer Perceptron

blocked URL

The output of the k node of the n layers is computed as the weighted average of the input variables, with weights that are subject to optimization viath th
training.

The activation layer filters out the output , using an activation function. It converts the output of a given layer before passing on the information to
consecutive layers. It can be a sigmoid, arctangent, step function (new functions as ReLu,SeLu) because they mimic a learning curve.

Then a bias or threshold parameter w is applied. This bias accounts for the random noise, in the sense that it measures how well the model fits the0
training set (i.e. how much the model is able to correctly predict the known outputs of the training examples.) The output of a given node is: .blocked URL

Supervised Learning: the loss function

In order to train the neural network, a further function is introduced in the model, the that quantifies the error between the NN output loss (cost) function bl
and the desired target output. The choice of the loss function is directly related to the activation function used in the output layer !ocked URL

If we have binary targets we use the : .blocked URL Cross Entropy Loss blocked URL

https://camo.githubusercontent.com/65ba23c63b3b0b33e9bfa84aeb649ec1ebe73fc3/68747470733a2f2f7261772e67697468756275736572636f6e74656e742e636f6d2f6264616e7a692f48696767735f65786572636973652f6d61696e2f53636865726d617461253230323032312d30342d3130253230616c6c6525323031352e32322e32352e706e67
https://render.githubusercontent.com/render/math?math=f%3A%20R%5E%7BN%7D%20%5Cto%20R%5E%7BM%7D&mode=inline
https://camo.githubusercontent.com/205892d63c4987228350bf13d7f9de7e21e7c06f/68747470733a2f2f7261772e67697468756275736572636f6e74656e742e636f6d2f6264616e7a692f48696767735f65786572636973652f6d61696e2f53636865726d617461253230323032312d30342d3130253230616c6c6525323031352e32332e31392e706e67
https://www.asimovinstitute.org/neural-network-zoo/
https://render.githubusercontent.com/render/math?math=x_%7B1%7D%20%3B%20x_%7B2%7D%20%3B...%3B%20x_%7Bp%7D&mode=inline
https://camo.githubusercontent.com/de36f707178ad05fb67e38ef14b3f7d752f9b026/68747470733a2f2f7261772e67697468756275736572636f6e74656e742e636f6d2f6264616e7a692f48696767735f65786572636973652f6d61696e2f53636865726d617461253230323032312d30342d3130253230616c6c6525323031342e32372e35372e706e67
https://render.githubusercontent.com/render/math?math=y%5E%7B%28n%29%7D_%7Bk%7D%28%5Cvec%7Bx%7D%29%3D%5Cphi%20%28w%5E%7Bn%7D_%7B0%7D%5Csum_%7Bj%3D1%7D%5E%7Bp%5E%7B%28n%29%7D%7Dw%5E%7B%28n%29%7D_%7Bkj%7Dx_%7Bj%7D%29&mode=inline
https://render.githubusercontent.com/render/math?math=y%28%5Cvec%7Bx%7D%29&mode=inline
https://render.githubusercontent.com/render/math?math=y%28%5Cvec%7Bx%7D%29&mode=inline
https://render.githubusercontent.com/render/math?math=t%20%5Cin%5C%7B0%2C1%5C%7D&mode=inline
https://render.githubusercontent.com/render/math?math=L%20%3D%20-tlog%5By%28%5Cvec%7Bx%7D%29%5D%20-%20%281-t%29log%281-y%28%5Cvec%7Bx%7D%29%29&mode=inline

During training we optimize the loss function, i.e. reduce the error between actual and predicted values. Since we deal with a binary classification problem,
the y can take on just two values, y = 0 (for hypothesis H) and = 1 (for hypothesis H).true true 1 0

A popular algorithm to optimize the weights consists of iteratively modifying the weights after each training observation or after a bunch of training
observations by doing a minimization of the loss function.

The minimization usually proceeds via the so-called (SGD) which modifies weight at each iteration according to theStochastic Gradient Descent
following formula: .blocked URL

Other more complex optimization algorithms are available in KERAS API.

More info: .https://keras.io/api/optimizers/

Metrics

A metric is a function that is used to judge the performance of your model.

Metric functions are similar to loss functions, except that the results from evaluating a metric are not used during the training of the model. . Note that you
may use any loss function as a metric.

Other parameters of a Neural Network

Hyperparameters are the variables that determine the network structure and how the network is trained. Hyperparameters are set before training. A list of
the main parameters is below:

Number of Hidden Layers and units: the hidden layers are the layers between the input layer and the output layer. Many hidden units
within a layer can increase accuracy. A smaller number of units may cause underfitting.
Network Weight Initialization: ideally, it may be better to use different weight initialization schemes according to the activation function
used on each layer. Mostly uniform distribution is used.
Activation functions: they are used to introduce nonlinearity to models, which allows deep learning models to learn nonlinear prediction
boundaries.
Learning Rate: it defines how quickly a network updates its parameters. A low learning rate slows down the learning process but converges
smoothly. A larger learning rate speeds up the learning but may not converge. Usually a decaying Learning rate is preferred.
Number of epochs: in terms of artificial neural networks, an epoch refers to one cycle through the full training dataset. Usually, training a
neural network takes more than a few epochs. An epoch is often mixed up with an iteration. Iterations is the number of batches or steps through
partitioned packets of the training data, needed to complete one epoch. You must increase the number of epochs until the validation accuracy
starts decreasing even when the training accuracy is increasing in order to avoid overfitting.
Batch size: a number of subsamples (events) given to the network after the update of the parameters. A good default for batch size might be
32. Also try 32, 64, 128, 256, and so on.
Dropout: regularization technique to avoid overfitting thus increasing the generalizing power. Generally, use a small dropout value of 10%-50%
of neurons.Considering a too low value has minimal effect, while a too high one could result in a network under-learning.

Applications in High Energy Physics

Nowadays ANNs are used on a variety of tasks: image and speech recognition, translation,filtering, game playing, medical diagnosis, autonomous
vehicles. There are also many applications in High Energy Physics: classification of signal and background events, particle tagging, simulation of event
reconstruction...

Usage of Keras API: basic concepts

Keras layers API

Layers are the basic building blocks of neural networks in Keras. A layer consists of a tensor-in tensor-out computation function (the layer's call method)
and some state, held in TensorFlow variables (the layer's weights).

Callbacks API

blocked URL

A callback is an object that can perform actions at various stages of training (e.g. at the start or end of an epoch, before or after a single batch, etc).

You can use callbacks in order to:

Write TensorBoard logs after every batch of training to monitor your metrics
Periodically save your model to disk
Do early stopping
Get a view on internal states and statistics of a model during training

More info and examples about the most used: , , .EarlyStopping LearningRateScheduler ReduceLROnPlateau

Regularization layers : the dropout layer

https://render.githubusercontent.com/render/math?math=w%5E%7B%28n%29%7D_%7Bij%7D%20%5Cto%20w%5E%7B%28n%29%7D_%7Bij%7D%20-%20%5Ceta%20%5Cfrac%7B%5Cpartial%20L%28w%29%7D%7B%5Cpartial%20w%5E%7B%28n%29%7D_%7Bij%7D%7D&mode=inline
https://keras.io/api/optimizers/
https://camo.githubusercontent.com/dc80bdd2a733ccf87179e38c0d3841136bc2fdd7/68747470733a2f2f7261772e67697468756275736572636f6e74656e742e636f6d2f6264616e7a692f48696767735f65786572636973652f6d61696e2f53636865726d617461253230323032312d30342d3130253230616c6c6525323031352e34362e31382e706e67
https://keras.io/api/callbacks/early_stopping/
https://keras.io/api/callbacks/learning_rate_scheduler/
https://keras.io/api/callbacks/reduce_lr_on_plateau/

blocked URL

The Dropout layer randomly sets input units to 0 with a frequency of at each step during training time, which helps prevent . Inputs notrate overtraining
set to 0 are scaled up by such that the sum over all inputs is unchanged.1/(1-rate)

Note that the Dropout layer only applies when training is set to such that no values are dropped during inference. When using , trainingTrue model.fit
will be appropriately set to automatically, and in other contexts, you can set the flag explicitly to when calling the layer.True True

Artificial Neural Network implementation

We can now start to define the first architecture. The most simple approach is using fully connected layers (layers in Keras/Tensorflow), with aDense selu
ctivation function and a final layer, since we are affording a binary classification problem.sigmoid

We are using the loss function during training, a standard loss function for binary classification problems. We will optimize thebinary_crossentropy
model with the RMSprop algorithm and we will collect metrics while the model is trained.accuracy

In order to avoid overfitting we use also Dropout layers and some callback functions.

Define Neural Network with 3 hidden layers (#h1=10*NINPUT , #h2=2*NINPUT , #h3=NINPUT) & Dropout layers

 input = Input(shape=(NINPUT,), name = 'input')
 hidden = Dense(NINPUT*10, name = 'hidden1', kernel_initializer='normal', activation='selu')(input)
 hidden = Dropout(rate=0.1)(hidden)
 hidden = Dense(NINPUT*2 , name = 'hidden2', kernel_initializer='normal', activation='selu')(hidden)
 hidden = Dropout(rate=0.1)(hidden)
 hidden = Dense(NINPUT, name = 'hidden3', kernel_initializer='normal', activation='selu')(hidden)
 hidden = Dropout(rate=0.1)(hidden)
 output = Dense(1 , name = 'output', kernel_initializer='normal', activation='sigmoid')(hidden)

create the model
 model = Model(inputs=input, outputs=output)

Define the optimizer (minimization algorithm)
#optim = SGD(lr=0.01,decay=1e-6)
#optim = Adam(lr=0.0001)
#optim = Adagrad(learning_rate=0.0001)
#optim = Adadelta(learning_rate=0.0001)
#optim = RMSprop() #default lr= 1e-3

 optim = RMSprop(lr = 1e-4)

print learning rate each epoch to see if reduce_LR is working as expected

 def get_lr_metric(optim):
 def lr(y_true, y_pred):
 return optim.lr
 return lr

compile the model
#model.compile(optimizer=optim, loss='mean_squared_error', metrics=['accuracy'], weighted_metrics=['accuracy'])
#model.compile(optimizer=optim, loss='mean_squared_error', metrics=['accuracy'])

 model.compile(optimizer=optim, loss='binary_crossentropy', metrics=['accuracy'], weighted_metrics=['accuracy'])
#accuracy (defined as the number of good matches between the predictions and the class labels)
print the model summary
model.summary()

Model: "model"

Layer (type) Output Shape Param #
===
input (InputLayer) [(None, 5)] 0

hidden1 (Dense) (None, 50) 300

dropout (Dropout) (None, 50) 0

hidden2 (Dense) (None, 10) 510

dropout_1 (Dropout) (None, 10) 0

hidden3 (Dense) (None, 5) 55

dropout_2 (Dropout) (None, 5) 0

output (Dense) (None, 1) 6
===
Total params: 871
Trainable params: 871
Non-trainable params: 0

plot_model(model, show_shapes=True, show_layer_names=True)

https://camo.githubusercontent.com/8ef0a65da5704a6aa35605fd844df05f7e7157c0/68747470733a2f2f7261772e67697468756275736572636f6e74656e742e636f6d2f6264616e7a692f48696767735f65786572636973652f6d61696e2f53636865726d617461253230323032312d30342d3130253230616c6c6525323031352e34362e32392e706e67

blocked URL

The student can have his/her model saved:
 model_file = 'ANN_model.h5'

##Call functions implementation to monitor the chosen metrics
 checkpoint = keras.callbacks.ModelCheckpoint(filepath = model_file,

 monitor = 'val_loss',
 mode='min',
 save_best_only = True)

#Stop training when a monitored metric has stopped improving
 early_stop = keras.callbacks.EarlyStopping(monitor = 'val_loss',

 mode='min',# quantity that has to be monitored(to be minimized in this
case)
 patience = 50, # Number of epochs with no improvement after which training will be
stopped.
 min_delta = 1e-7,
 restore_best_weights = True) # update the model with the best-seen weights

#Reduce learning rate when a metric has stopped improving
 reduce_LR = keras.callbacks.ReduceLROnPlateau(monitor = 'val_loss',

 mode='min',# quantity that has to be monitored
 min_delta=1e-7,
 factor = 0.1, # factor by which LR has to be reduced...
 patience = 10, #...after waiting this number of epochs with no
improvements
 #on monitored quantity
 min_lr= 0.00001)

 callback_list = [reduce_LR, early_stop, checkpoint]
#callback_list = [checkpoint]
#callback_list = [early_stop, checkpoint]

Number of training epochs
nepochs=500
nepochs=200
Batch size
batch=250
Train classifier (2 minutes more or less)

 history = model.fit(X_train_val[:,0:NINPUT],
 Y_train_val,
 epochs=nepochs,
 sample_weight=W_train_val,
 batch_size=batch,
 callbacks = callback_list,
 verbose=1, # switch to 1 for more verbosity
 validation_split=0.3) # fix the validation dataset size

model = keras.models.load_model('ANN_model.h5')

Description of the Random Forest (RF) and Scikit-learn library

In this section you will find the following subsections:

Introduction to the Random Forest algorithm
If you have the knowledge about RF you may skip it.
Optional exercise: draw a decision tree
Here you find an atypical exercise in which it is suggested to think about the growth of a decision tree in this specific physics problem.

Here we will use it to build a Random Forest Model and compare its discriminating power w.r.t. the Neural Network previously implemented.

What is Scikit-learn library?

Scikit-learn is a simple and efficient free-access tool for predictive data analysis and it can be used in various contexts. It is built on NumPy, SciPy, and
matplotlib.

Introduction to the Random Forest algorithm

blocked URL

Decision Trees and their extension Random Forests are robust and easy-to-interpret machine learning algorithms for classification tasks.

Decision Trees represent a simple and fast way of learning a function that maps data x to outputs y, where x can be a mix of categorical and
numericvvariables and y can be categorical for classification, or numeric for regression.

https://raw.githubusercontent.com/bdanzi/Higgs_exercise/main/ANN_model.png
https://camo.githubusercontent.com/b19c18e645f875c68ddd77148b95c97276a376b2/68747470733a2f2f7261772e67697468756275736572636f6e74656e742e636f6d2f6264616e7a692f48696767735f65786572636973652f6d61696e2f53636865726d617461253230323032312d30342d3130253230616c6c6525323031362e30372e31352e706e67

Comparison with Neural Networks

(Deep) Neural Networks pretty much do the same thing. However, despite their power against larger and more complex datasets, they are extremely hard
 and they can take many iterations and hyperparameter adjustments before a good result is obtained.to interpret

One of the biggest advantages of using Decision Trees and Random Forests is the ease in which we can see what features or variables contribute to the
classification or regression and their relative importance based on their location depthwise in the tree.

Decision Tree

blocked URL

A decision tree is a sequence of selection cuts that are applied in a specified order on a given variable dataset.

Each cut splits the sample into nodes, each of which corresponds to a given number of observations classified as class1 () or as class2 ().signal background

A node may be further split by the application of the subsequent cut in the tree. Nodes in which either signal or background are largely dominant are
classified as leafs, and no further selection is applied.

A node may also be classified as , and the selection path is stopped, in case too few observations per node are counted, or in case the total number ofleaf
identified nodes is too large, and different criteria have been proposed and applied in real implementations.

Each branch on a tree represents one sequence of cuts. Along the decision tree, the same variable may appear multiple times, depending on the depth of
the tree, each time with a different applied cut, possibly even with different inequality directions.

Selection cuts can be tuned in order to achieve the best split level in each node according to some metrics (Gini index, cross-entropy...). Most of them are
related to the , that is the fraction of signal events over the whole events set in a given node P=S/(S+B).purity of a node

The gain due to the splitting of a node A into the nodes B1 and B2, which depends on the chosen cut, is given by I=I(A)-I(B1)-I(B2) , where I denotes the
adopted metric (G or E, in case of the Gini index or cross-entropy introduced above). By varying the cut, the optimal gain may be achieved.

Pruning Tree

blocked URL
A solution to the overtraining is pruning, which is eliminating subtrees (branches) that seem too specific to the training sample:

a node and all its descendants turn into a leaf
stop tree growth during the building phase

Be Careful: early stopping conditions may prevent from discovering further useful splitting. Therefore, grow the full tree and when results from subtrees are
not significantly different from results coming from the parent one, prune them!

From tree to the forest

The random forest algorithm consists of ‘growing’ a large number of individual decision trees that operate as an ensemble from replicas of the training
samples obtained by randomly resampling the input data (features and examples). blocked URL
Its main characteristics are:

No minimum size is required for leaf nodes. The final score of the algorithm is given by an unweighted average of the prediction (zero or one) by
each individual tree.
Each individual tree in the random forest splits out a class prediction and the class with the most votes becomes our model’s prediction.
As a large number of relatively uncorrelated models (trees) operating as a committee,this algorithm will outperform any of the individual
constituent models. The reason for this wonderful effect is that the trees protect each other from their individual errors (as long as they don’t
constantly all err in the same direction). While some trees may be wrong, many other trees will be right, so as a group the trees are able to move
in the correct direction.
In a single decision tree, we consider every possible feature and pick the one that produces the best separation between the observations in the
left node vs. those in the right node. In contrast, each tree in a random forest can pick only from a random subset of features (bagging).This
forces even more variation amongst the trees in the model and ultimately results in lower correlation across trees and more diversification.

Feature importance

The relative rank (i.e. depth) of a feature used as a decision node in a tree can be used to assess the relative importance of that feature with respect to the
predictability of the target variable. Features used at the top of the tree contribute to the final prediction decision of a larger fraction of the input samples.
The expected fraction of the samples to which they contribute can thus be used as an estimate of the relative importance of the features. In scikit-learn, the
fraction of samples to which a feature contributes is combined with the decrease in impurity from splitting them to create a normalized estimate of the
predictive power of that feature.

Warning: The impurity-based feature importances computed on tree-based models suffer from two flaws that can lead to misleading conclusions:

They are computed on statistics derived from the training dataset and therefore do not necessarily inform us on which features are most important
to make good predictions on the held-out dataset.
They favor high cardinality features, that are featured with many unique values. Permutation feature importance is an alternative to impurity-based
feature importance that does not suffer from these flaws.

Due to its complexity, we will not use it in this exercise. For more details, see the following link: https://scikit-learn.org/stable/auto_examples/ensemble
./plot_forest_importances.html

https://camo.githubusercontent.com/f3e538e18500e8158b1f498729eb20613c35c26f/68747470733a2f2f7261772e67697468756275736572636f6e74656e742e636f6d2f6264616e7a692f48696767735f65786572636973652f6d61696e2f53636865726d617461253230323032312d30342d3130253230616c6c6525323031362e31332e32312e706e67
https://camo.githubusercontent.com/35230ea7455a5b59e7a8285a731688d6ec90353c/68747470733a2f2f7261772e67697468756275736572636f6e74656e742e636f6d2f6264616e7a692f48696767735f65786572636973652f6d61696e2f53636865726d617461253230323032312d30342d3130253230616c6c6525323031362e32342e30322e706e67
https://raw.githubusercontent.com/bdanzi/Higgs_exercise/main/Schermata%202021-04-10%20alle%2016.37.10.png
https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html
https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html

Optional exercise : Draw a decision tree

Exercise for students: Here it is an example of how you can build a decision tree by yourself! Try to imagine how could be the decision tree's growth in
our analysis case and complete it! We give you some hints!

import matplotlib.pyplot as plt

%matplotlib inline
 fig = plt.figure(figsize=(10, 4))
 ax = fig.add_axes([0, 0, 0.8, 1], frameon=False, xticks=[], yticks=[])

 ax.set_title('Decision Tree: Higgs Boson events Classification', size=24,color='red')

 def text(ax, x, y, t, size=20, **kwargs):
 ax.text(x, y, t,
 ha='center', va='center', size=size,
 bbox=dict(boxstyle='round', ec='blue', fc='w'), **kwargs)

Here you are the variables we can use for the training phase:
--
High level features:
['f_massjj', 'f_deltajj', 'f_mass4l', 'f_Z1mass' , 'f_Z2mass']
--
Low level features:
['f_lept1_pt','f_lept1_eta','f_lept1_phi', \
'f_lept2_pt','f_lept2_eta','f_lept2_phi', \
'f_lept3_pt','f_lept3_eta','f_lept3_phi', \
'f_lept4_pt','f_lept4_eta','f_lept4_phi', \
'f_jet1_pt','f_jet1_eta','f_jet1_phi', \
'f_jet2_pt','f_jet2_eta','f_jet2_phi']
#---

 text(ax, 0.5, 0.9, "How large is\n\"f_lepton1_pt\"?", 20,color='red')
 text(ax, 0.3, 0.6, "How large is\n\"f_lepton2_pt\"?", 18,color='blue')
 text(ax, 0.7, 0.6, "How large is\n\"f_lepton3_pt\"?", 18)
 text(ax, 0.12, 0.3, "How large is\n\"f_lepton4_pt\"?", 14,color='magenta')
 text(ax, 0.38, 0.3, "How large is\n\"f_jet1_eta\"?", 14,color='violet')
 text(ax, 0.62, 0.3, "How large is\n\"f_jet2_eta\"?", 14,color='orange')
 text(ax, 0.88, 0.3, "How large is\n\"f_jet1_phi\"?", 14,color='green')

 text(ax, 0.4, 0.75, ">= 1 GeV", 12, alpha=0.4,color='red')
 text(ax, 0.6, 0.75, "< 1 GeV", 12, alpha=0.4,color='red')

 text(ax, 0.21, 0.45, ">= 3 GeV", 12, alpha=0.4,color='blue')
 text(ax, 0.34, 0.45, "< 3 GeV", 12, alpha=0.4,color='blue')

 text(ax, 0.66, 0.45, ">= 2 GeV", 12, alpha=0.4,color='black')
 text(ax, 0.79, 0.45, "< 2 GeV", 12, alpha=0.4,color='black')

 ax.plot([0.3, 0.5, 0.7], [0.6, 0.9, 0.6], '-k',color='red')
 ax.plot([0.12, 0.3, 0.38], [0.3, 0.6, 0.3], '-k',color='blue')
 ax.plot([0.62, 0.7, 0.88], [0.3, 0.6, 0.3], '-k')
 ax.plot([0.0, 0.12, 0.20], [0.0, 0.3, 0.0], '--k')
 ax.plot([0.28, 0.38, 0.48], [0.0, 0.3, 0.0], '--k')
 ax.plot([0.52, 0.62, 0.72], [0.0, 0.3, 0.0], '--k')
 ax.plot([0.8, 0.88, 1.0], [0.0, 0.3, 0.0], '--k')

 ax.axis([0, 1, 0, 1])

fig.savefig('05.08-decision-tree.png')

blocked URL

Random Forest implementation

Now you can start to define a second ML architecture setting the tree construction parameters to fix:

the assignment of a terminal node to a class;
the stop splitting of the single tree;
selection criteria of splits.

Grid Search for Parameter estimation

A machine learning model has two types of parameters. The first type is the that are learned through a machine learning model while theparameters
second type are the whose value is used to control the learning process.hyperparameters

Hyperparameters can be thought of as model settings. These settings need to be tuned for each problem because the best model hyperparameters for
one particular dataset will not be the best across all datasets.

The process of (also called) means finding the combination of hyperparameter values for a machinehyperparameter tuning hyperparameter optimization
learning model that performs the best - as measured on a validation dataset - for a problem.

https://raw.githubusercontent.com/bdanzi/Higgs_exercise/main/Tree.png

Normally we set the value for these hyperparameters by hand, as we did for our ANN, and see which parameters reach the best performance. However,
randomly selecting the parameters for the algorithm can be exhaustive.

Therefore, instead of randomly selecting the values of the parameters, a better approach would be to develop an algorithm which automatically finds the
best parameters for a particular model. Grid Search is one of such algorithms.

Hyperparameter optimization algorithms usually finds a tuple of hyperparameters that yields an optimal model which maximizes a predefined on ametric
given independent data. The metric takes a tuple of hyperparameters and returns the associated value.) is often used to estimate thisCross-validation
generalization performance.

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import plot_roc_curve
 from sklearn.model_selection import GridSearchCV

Let's implement the grid search algorithm for our Random Forest discriminator!

blocked URL
Grid Search algorithm basically tries all possible combinations of parameter values and returns the combination with the . The Gridhighest accuracy
Search algorithm can be very slow, owing to the potentially huge number of combinations to test. Furthermore, performing considerablycross-validation
increases the execution time of the process!
For these reasons, the algorithm is commented on the following code cells and images of the outputs are left to you!

To read more about cross-validation on Scikit-learn:

Cross_validation
To read more about GridSearchCV algorithm on Scikit-learn:

GridSearchCV algorithm

#classifier = RandomForestClassifier(random_state=7)

The first step we need to perform is to
create a dictionary of all the parameters and their corresponding
set of values that you want to test for best performance.
The name of the dictionary items corresponds to the parameter name
and the value corresponds to the list of values for the parameter.
The parameter values that we want to try out
are passed in the list. In the below code we want to find
which values of the RF hyperparameters provides the highest accuracy

#grid_param = {
'criterion': ['gini','entropy'],
'n_estimators': [300, 500],
'bootstrap': [True, False],
'max_depth': [3,5],
'min_samples_leaf':[300,500],
'min_samples_split':[200,400],
'max_features':[3,4,5]
}

Once the parameter dictionary is created,
the next step is to create an instance of the GridSearchCV class.
You need to pass values for the estimator parameter,
which basically is the algorithm that you want to execute.
The param_grid parameter takes the parameter dictionary that we
just created as parameter, the scoring parameter takes the performance metrics,
the cv parameter corresponds to number of folds,
which is 5 in our case, and finally the n_jobs parameter refers to the
number of CPU's that you want to use for execution.
A value of -1 for n_jobs parameter means that use all available computing power.
This can be handy if you have large number amount of data.

#gd_sr = GridSearchCV(estimator=classifier,
param_grid=grid_param, #parameter dictionary
scoring='accuracy', #performance metrics
cv=3, #number of folds
n_jobs=-1) #use all available computing power

Time required : 7h 50 minutes
gd_sr.fit(X_train_val, np.ravel(Y_train_val))

Output of the previous code cell:

blocked URL

https://en.wikipedia.org/wiki/Cross-validation_(statistics
https://camo.githubusercontent.com/078f46a263e05a48f9afb8b39d497bfefbec5cff/68747470733a2f2f7363696b69742d6c6561726e2e6f72672f737461626c652f5f696d616765732f677269645f7365617263685f63726f73735f76616c69646174696f6e2e706e67
https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://camo.githubusercontent.com/592c9ba11c933e49d51b450ee077cbbe8c8d1a0e/68747470733a2f2f7261772e67697468756275736572636f6e74656e742e636f6d2f6264616e7a692f48696767735f65786572636973652f6d61696e2f53636865726d617461253230323032312d30342d3230253230616c6c6525323032302e30392e31342e706e67

#best_parameters = gd_sr.best_params_
#print('Best parameters:')
#print(best_parameters)
#best_result = gd_sr.best_score_
#print('Best metrics score (accuracy):')
#print(best_result)

Output of the previous code cell:

blocked URL
blocked URL

Best parameters:

{'bootstrap': False, 'criterion': 'gini', 'max_depth': 5, 'max_features': 4,
'min_samples_leaf': 500, 'min_samples_split': 200, 'n_estimators': 300}
Best metrics score (accuracy):
0.9199343250564441

 rfc=RandomForestClassifier(n_estimators=300,criterion='gini',
 verbose=0 , min_samples_split=200,
 max_depth= 5,min_samples_leaf=500,
 max_features=4, bootstrap=False,random_state=7)

Use the same sets X_train_val, X_test, Y_train_val, Y_test , W_train_val ,
W_test used for the ANN in order to train our Random Forest algorithm

randomforest=rfc.fit(X_train_val,np.ravel(Y_train_val),np.ravel(W_train_val))

In the following few lines of code, the random forest model which we created in the previous step is saved as a so that you can load it as a new.pkl file
object called in another notebook!pickled_model

import pickle

Save to file in the current working directory
 pkl_filename = "rf_model.pkl"

 with open(pkl_filename, 'wb') as file:
 pickle.dump(rfc, file)

Performance evaluation

In this section you will find the following subsections:

ROC curve and Rates definitions
Overfitting and test evaluation of an MVA model
If you have the knowledge about these theoretical concepts you may skip it.
Artificial Neural Network performance
Exercise 1 - Random Forest performance
Here you will re-do the procedure followed for the ANN in order to evaluate the Random Forest performance.
Finally, you will compare the discriminating performance of the two trained ML models.

ROC curve and rates definitions

There are many ways to evaluate the quality of a model’s predictions. In the ANN implementation, we were evaluating the accuracy metrics and losses of
the training and validation samples.

A largely used evaluation metrics for binary classification tasks is also the curve or .Receiver Operating Characteristic ROC curve

First, we introduce the terms and referring to the classifier’s prediction, and the terms and referring to whether thepositive negative true false
network prediction corresponds to the observation (the "truth" level). In our Higgs boson binary classification exercise, we can think the outcomenegative
as the one labeling background (that, in the last sigmoid layer of our network, would mean a number close to 0 - in the Random Forest score would mean
a number equals to zero), and the the outcome as the one labeling signal (that, in the last sigmoid layer of our network, would mean a numberpositive
close to 1 - random forest score equals to zero).

TP (true positive): the event is signal, the prediction is signal ()correct result
FP (false positive): the event is background, but the prediction is signal ()unexpected result
TN (true negative): the event is background, the prediction is background ()correct absence of signal
FN (false negative): the event is signal, the prediction is background ()missing a true signal event

Some additional definitions:

TPR (true positive rate): how often the network predicts a positive outcome (), when the input is positive (): signal signal blocked URL
FPR (false positive rate): how often the network predicts a positive outcome (), when the input is negative () : signal background blocked URL

A good classifier should give a high TPR and a small FPR.

Quoting wikipedia:

https://camo.githubusercontent.com/4baf3f26c3552b5b88137895ffac01c1d11f7eee/68747470733a2f2f7261772e67697468756275736572636f6e74656e742e636f6d2f6264616e7a692f48696767735f65786572636973652f6d61696e2f53636865726d617461253230323032312d30342d3230253230616c6c6525323032302e31302e34362e706e67
https://camo.githubusercontent.com/df4c43fbfb240048169d565109e08d7c0a0f9e6b/68747470733a2f2f7261772e67697468756275736572636f6e74656e742e636f6d2f6264616e7a692f48696767735f65786572636973652f6d61696e2f53636865726d617461253230323032312d30342d3230253230616c6c6525323032302e31302e35352e706e67
https://render.githubusercontent.com/render/math?math=TPR%20%3D%20%5Cfrac%7BTP%7D%7BTP%2BFN%7D&mode=inline
https://render.githubusercontent.com/render/math?math=FPR%20%3D%20%5Cfrac%7BFP%7D%7BFP%2BTN%7D&mode=inline

"A receiver operating characteristic curve, or ROC curve, is a graphical plot that illustrates the diagnostic ability of a binary classifier system as its
discrimination threshold is varied.

The ROC curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR) at various threshold settings. The true-positive rate
is also known as sensitivity, probability of detection, or signal efficiency in high energy physics. The false-positive rate is also known as the probability of
false alarm or fake rate in high energy physics."

The ROC curve requires the true binary value (0 or 1, background or signal) and the probability estimates of the positive (signal) class.

The function computes the area under the receiver operating characteristic (ROC) curve, which is also denoted by AUC. By computingroc_auc_score
the area under the roc curve, the curve information is summarized in one number.

For more information see: .https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve

The AUC is the probability that a classifier will rank a randomly chosen positive instance higher than a randomly chosen negative one. The higher the
AUC, the better the performance of the classifier. If the AUC is 0.5, the classifier is uninformative, i.e., it will rank equally a positive or a negative
observation.

Other metrics

The is the ratio where TPR is the number of true positives and FPR the number of false positives. The precision is intuitivelyprecision/purity blocked URL
the ability of the classifier not to label as positive a sample that is negative.

The is the ratio where TP is the number of true positives and FN the number of false negatives. Therecall/sensitivity/TPR/signal efficiency blocked URL
recall is intuitively the ability of the classifier to find all the positive samples.

Accuracy is defined as the number of good matches between the predictions and the true labels.

You can always achieve high accuracy on skewed/unbalanced datasets by predicting the most the same output (the most common one) for every input.
Thus another metric, can be used when there are more positive examples than negative examples. It is defined in terms of the precision and recall as F1 (2

. In our case, we will use a simplification of this metric that is the product .recall) / (precision + recall)precision signal*efficiency

In []:

#Let's import all the metrics that we need later on!
 from sklearn.metrics import ConfusionMatrixDisplay,confusion_matrix,accuracy_score , precision_score , recall_score

 , precision_recall_curve , roc_curve, auc , roc_auc_score

Overfitting and test evaluation of an MVA model

blocked URL
The loss function and the accuracy metrics give us a measure of the of the ML algorithm. Over-fitting happens when an ML overtraining (overfitting)
algorithm learns to recognize a pattern that is primarily based on the training (validation) sample and that is nonexistent when looking at the testing
(training) set (see the plot on the right side to understand what we would expect when overfitting happens).

Artificial Neural Network performance

Let's see what we obtained from our ANN model training making some plots!

plot the loss fuction vs epoch during the training phase
the plot of the loss function on the validation set is also computed and plotted

 plt.rcParams['figure.figsize'] = (13,6)
 plt.plot(history.history['loss'], label='loss train',color='green')

 plt.plot(history.history['val_loss'], label='loss validation',color='magenta')
 plt.title("Loss", fontsize=12,fontweight='bold', color='r')

plt.legend(loc="upper right")
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.show()

blocked URL

Question to student: Why does the validation loss decrease more than the training loss?

Hint: remember we used several callfunctions to train our ANN.

https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve
https://render.githubusercontent.com/render/math?math=%5Cfrac%7BTP%7D%7BTP%20%2B%20FP%7D&mode=inline
https://render.githubusercontent.com/render/math?math=%5Cfrac%7BTP%7D%7BTP%20%2B%20FN%7D&mode=inline
https://camo.githubusercontent.com/ee8494d5bee2529985ffc7c752458f4515ab4ed1/68747470733a2f2f7261772e67697468756275736572636f6e74656e742e636f6d2f6264616e7a692f48696767735f65786572636973652f6d61696e2f53636865726d617461253230323032312d30342d3130253230616c6c6525323031352e35312e32332e706e67
https://raw.githubusercontent.com/bdanzi/Higgs_exercise/main/Loss.png

Plot accuracy metrics vs epoch during the training
for the proper training dataset and the validation one

 plt.rcParams['figure.figsize'] = (13,6)
 plt.plot(history.history['accuracy'], label='accuracy train',color='green')

 plt.plot(history.history['val_accuracy'], label='accuracy validation',color='magenta')
 plt.title("Accuracy",fontsize=12,fontweight='bold', color='r')

 plt.ylim([0, 1.0])
plt.legend(loc="lower left")
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.show()

blocked URL

Now let's use our test data set in order to see which are the performance of our model on a never-seen-before dataset and make comparison with what
we obtained with the training data set!

Get ANN model label predictions and performance metrics curves, after having trained the model
 y_true = Y_test[:,0]

 y_true_train = Y_train_val[:,0]
 w_test = W_test[:,0]
 w_train = W_train_val[:,0]

 Y_prediction = model.predict(X_test[:,0:NINPUT])

Get precision, recall,
 p, r, t = precision_recall_curve(y_true= Y_test, probas_pred= Y_prediction ,

 sample_weight=w_test)
Get False Positive Rate (FPR) True Positive Rate (TPR) , Thresholds/Cut on the ANN's score

 fpr, tpr, thresholds = roc_curve(y_true= Y_test, y_score= Y_prediction, sample_weight=w_test)

 Y_prediction_train = model.predict(X_train_val[:,0:NINPUT])
 p_train, r_train, t_train = precision_recall_curve(Y_train_val, Y_prediction_train ,

 sample_weight=w_train)
 fpr_train, tpr_train, thresholds_train = roc_curve(Y_train_val, Y_prediction_train,

 sample_weight=w_train)

Plotting the ANN ROC curve on the test and training datasets
 roc_auc = auc(fpr, tpr)

 roc_auc_train = auc(fpr_train,tpr_train)
 plt.rcParams['figure.figsize'] = (10,5)

 plt.plot(fpr_train, tpr_train, color='green', label='NN AUC_train = %.4f' % (roc_auc_train))
 plt.plot(fpr, tpr, color='magenta', label='NN AUC_test = %.4f' % (roc_auc))

Comparison with the random chance curve
 plt.plot([0, 1], [0, 1], linestyle='--', color='k', label='random chance')
 plt.xlim([0, 1.0]) #fpr
 plt.ylim([0, 1.0]) #tpr

plt.xlabel('False Positive Rate(FPR)')
plt.ylabel('True Positive Rate(TPR)')

 plt.title('Receiver Operating Characteristic (ROC)',fontsize=12,fontweight='bold', color='r')
plt.legend(loc="lower right")
plt.show()

blocked URL

Plot of the metrics Efficiency x Purity -- ANN
Looking at this curve we will choose a threshold on the ANN score
for distinguishing between signal and background events
#plt.plot(t, p[:-1], label='purity_test')
#plt.plot(t_train, p_train[:-1], label='purity_train')
#plt.plot(t, r[:-1], label='efficiency_test')
#plt.plot(t_train, r_train[:-1], label='efficiency_test')

 plt.rcParams['figure.figsize'] = (10,5)
plt.plot(t,p[:-1]*r[:-1],label='purity*efficiency_test')
plt.plot(t_train,p_train[:-1]*r_train[:-1],label='purity*efficiency_train')
plt.xlabel('Threshold/cut on the ANN score')
plt.ylabel('Purity*efficiency')

 plt.title('Purity*efficiency vs Threshold on the ANN score',fontsize=12,fontweight='bold', color='r')
#plt.tick_params(width=2, grid_alpha=0.5)
plt.legend(markerscale=50)
plt.show()

blocked URL

https://raw.githubusercontent.com/bdanzi/Higgs_exercise/main/Accuracy.png
https://raw.githubusercontent.com/bdanzi/Higgs_exercise/main/ROC_ANN.png
https://raw.githubusercontent.com/bdanzi/Higgs_exercise/main/eff*purity_ANN.png

Print metrics imposing a threshold for the test sample. In this way the student
can use later the model's score to discriminate signal and bkg events for a fixing
score

cut_dnn=0.6

Transform predictions into a array of entries 0,1 depending if prediction is beyond the
chosen threshold

 y_pred = Y_prediction[:,0]
 y_pred[y_pred >= cut_dnn]= 1 #classify them as signal
 y_pred[y_pred < cut_dnn]= 0 #classify them as background
 y_pred_train = Y_prediction_train[:,0]

y_pred_train[y_pred_train>=cut_dnn]=1
y_pred_train[y_pred_train<cut_dnn]=0

print("y_true.shape",y_true.shape)
print("y_pred.shape",y_pred.shape)
print("w_test.shape",w_test.shape)
print("Y_prediction",Y_prediction)
print("y_pred",y_pred)

y_true.shape (22997,)
y_pred.shape (22997,)
w_test.shape (22997,)
Y_prediction [[1.]
 [1.]
 [0.]
 ...
 [0.]
 [1.]
 [0.]]
y_pred [1. 1. 0. ... 0. 1. 0.]

Other Metrics values for the ANN algorithm having fixed an ANN score threshold
 accuracy = accuracy_score(y_true, y_pred, sample_weight=w_test)
 precision = precision_score(y_true, y_pred, sample_weight=w_test)

 recall = recall_score(y_true, y_pred, sample_weight=w_test)
 f1 = 2*precision*recall/(precision+recall)
 cm = confusion_matrix(y_true, y_pred, sample_weight=w_test)

 print('Cut/Threshold on the ANN output : %.4f' % cut_dnn)
 print('ANN Test Accuracy: %.4f' % accuracy)

 print('ANN Test Precision/Purity: %.4f' % precision)
 print('ANN Test Sensitivity/Recall/TPR/Signal Efficiency: %.4f' % recall)

 print('ANN Test F1: %.4f' %f1)
print('')

Cut/Threshold on the ANN output : 0.6000
ANN Test Accuracy: 0.9286
ANN Test Precision/Purity: 0.9086
ANN Test Sensitivity/Recall/TPR/Signal Efficiency: 0.9543
ANN Test F1: 0.9309

The information from the evaluation metrics can be summarised in a so-called whose elements, from the top-left side, represent TN, FP,confusion matrix
FN and TP rates.

print('Cut/Threshold on the ANN output : %.4f \n' % cut_dnn)
print('Confusion matrix ANN\n')

 plt.style.use('default') # It's ugly otherwise
 plt.figure(figsize=(10,10))

plt.subplot(2,1,1)
 mat_train = confusion_matrix(y_true_train, y_pred_train,sample_weight=w_train,normalize='all')

 sns.heatmap(mat_train.T, square=True, annot=True, fmt='.4f', cbar=True,linewidths=1,linecolor='black')
plt.xlabel('True label')
plt.ylabel('Predicted label');
plt.title('Normalized Confusion Matrix for the Train data set - Artificial Neural Network ')

 plt.subplot(2, 1, 2)
 mat_test = confusion_matrix(y_true, y_pred ,sample_weight=w_test,normalize='all')

 sns.heatmap(mat_test.T, square=True, annot=True, fmt='.4f', cbar=True,linewidths=1,linecolor='black')
plt.xlabel('True label')
plt.ylabel('Predicted label');
plt.title('Normalized Confusion Matrix for the Test data set - Artificial Neural Network ')

Cut/Threshold on the ANN output : 0.6000

Confusion matrix ANN

blocked URL

An alternative way to check overfitting, and choosing correctly a threshold for selecting signal events, is plotting signal and background ANN predictions for
the training and test datasets. If the distributions are quite similar it means that the algorithm learned how to generalize!
For measuring quantitatively the overfitting one can perform a Kolmogorov-Smirnov test that we will not implement here.

Let's get signal and background events for both test and training dataset!

 df_sig = df['sig'].filter(NN_VARS)
 df_bkg = df['bkg'].filter(NN_VARS)

 X_sig = np.asarray(df_sig.values).astype(np.float32)
 X_bkg = np.asarray(df_bkg.values).astype(np.float32)

 df_test = df_all.iloc[0:test_size+1]
 df_train = df_all.iloc[test_size+1:size]

 df_test_sig = df_test[(df_test['isSignal']>=1)].filter(NN_VARS)
 df_test_bkg = df_test[(df_test['isSignal']<1)].filter(NN_VARS)

 df_train_sig = df_train[(df_train['isSignal']>=1)].filter(NN_VARS)
 df_train_bkg = df_train[(df_train['isSignal']<1)].filter(NN_VARS)

 X_test_sig = np.asarray(df_test_sig.values).astype(np.float32)
 X_test_bkg = np.asarray(df_test_bkg.values).astype(np.float32)
 X_train_sig = np.asarray(df_train_sig.values).astype(np.float32)
 X_train_bkg = np.asarray(df_train_bkg.values).astype(np.float32)

print('Test dataset shape:')
print(df_test.shape)
print('Test dataset signal shape:')
print(df_test_sig.shape)
print('Test dataset background shape:')
print(df_test_bkg.shape)

 print('Training dataset shape')
print(df_train.shape)

 print('Training signal dataset shape')
print(df_train_sig.shape)

 print('Training background dataset shape')
print(df_train_bkg.shape)

 Y_test_sig = model.predict(X_test_sig) #flag predicted on all signal events
 Y_test_bkg = model.predict(X_test_bkg) #flag predicted on all background events
 Y_train_sig = model.predict(X_train_sig)
 Y_train_bkg = model.predict(X_train_bkg)

Test dataset shape:
(22997, 27)
Test dataset signal shape:
(2870, 5)
Test dataset background shape:
(20127, 5)
Training dataset shape
(91987, 27)
Training signal dataset shape
(11390, 5)
Training background dataset shape
(80597, 5)

df_test.head()

f_run f_event f_weight f_massjj f_deltajj f_mass4l f_Z1mass f_Z2mass f_lept1_pt f_lept1_eta f_lept1_phi f_lept2_pt f_lept2_eta f_lept2_phi

9101
1 80913 0.000075 499.415680 3.541091 123.750252 69.386528 22.196232 47.066288 -1.938778 -0.157178 24.794939 -1.477099

61307
1 1799470 0.000004 1034.700684 5.445127 123.126251 87.025040 30.899391 54.302334 1.254665 0.491101 34.218605 1.576207

434065
1 48636330 0.000015 131.100220 1.032331 224.591537 90.623093 115.573257 64.985748 1.022329 0.020787 49.217106 -0.768105

755935
1 54379498 0.000004 83.658073 1.574079 201.779816 95.846970 85.438805 72.073616 0.108228 -2.730205 54.219593 0.489068

504179
1 98493569 0.000001 652.359863 3.799881 335.023987 90.216057 92.984535 126.748039 1.168150 -0.711313 87.271675 -0.707292

df_all.head()

f_run f_event f_weight f_massjj f_deltajj f_mass4l f_Z1mass f_Z2mass f_lept1_pt f_lept1_eta f_lept1_phi f_lept2_pt f_lept2_eta f_lept2_phi

9101
1 80913 0.000075 499.415680 3.541091 123.750252 69.386528 22.196232 47.066288 -1.938778 -0.157178 24.794939 -1.477099

https://raw.githubusercontent.com/bdanzi/Higgs_exercise/main/CM_ANN.png
https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test

61307
1 1799470 0.000004 1034.700684 5.445127 123.126251 87.025040 30.899391 54.302334 1.254665 0.491101 34.218605 1.576207

434065
1 48636330 0.000015 131.100220 1.032331 224.591537 90.623093 115.573257 64.985748 1.022329 0.020787 49.217106 -0.768105

755935
1 54379498 0.000004 83.658073 1.574079 201.779816 95.846970 85.438805 72.073616 0.108228 -2.730205 54.219593 0.489068

504179
1 98493569 0.000001 652.359863 3.799881 335.023987 90.216057 92.984535 126.748039 1.168150 -0.711313 87.271675 -0.707292

Normalized Distribution of the ANN score for the whole dataset
ax = plt.subplot(4, 2, 4)
 X = np.linspace(0.0, 1.0, 100) #100 numbers between 0 and 1

 plt.rcParams['figure.figsize'] = (10,5)
 hist_test_sig = plt.hist(Y_test_sig, bins=X, label='test_sig',histtype='step',log=True,density=1)
 hist_test_bkg = plt.hist(Y_test_bkg, bins=X, label='test_bkg',histtype='step',log=True,density=1)
 hist_train_sig = plt.hist(Y_train_sig, bins=X, label='train_sig',histtype='step',log=True,density=1)
 hist_train_bkg = plt.hist(Y_train_bkg, bins=X, label='train_bkg',histtype='step',log=True,density=1)

plt.xlabel('ANN score')
plt.ylabel('Frequency')

 plt.legend(loc='upper right',prop={'size': 8})
 plt.title('ANN score normalized distribution on the whole dataset',fontsize=12,fontweight='bold', color='r')

plt.show()

blocked URL

Exercise 1 - Random Forest performance

Evaluate the performance of the Random Forest algorithm. : use the method this time!Hint predict_proba
In []:

Get RF model predictions and performance metric curves, after having trained the model
Get RF model predictions and performance metric curves, after having trained the model
Do it for the test dataset:
y_pred_rfc=randomforest.predict(X_test[:,0:NINPUT])

 y_pred_rfc_prob= randomforest.predict_proba(X_test[:,0:NINPUT])
 y_pred_rfc_proba = y_pred_rfc_prob[:,-1]
 p_rf,r_rf,t_rf= precision_recall_curve(Y_test, probas_pred=y_pred_rfc_proba , sample_weight=w_test)

 fpr_rf, tpr_rf, thresholds_rf = roc_curve(Y_test, y_score=y_pred_rfc_proba, sample_weight=w_test)

Do the same for the training dataset:
y_pred_rfc_train=randomforest.predict(X_train_val[:,0:NINPUT])

 y_pred_rfc_train_prob= randomforest.predict_proba(X_train_val[:,0:NINPUT])
 y_pred_rfc_train_proba = y_pred_rfc_train_prob[:,-1] #last element associated to the signal probability

 p_train_rf, r_train_rf, t_train_rf = precision_recall_curve(Y_train_val, y_pred_rfc_train_proba, sample_weight=w_t
rain)

 fpr_train_rf, tpr_train_rf, thresholds_train_rf = roc_curve(Y_train_val, y_pred_rfc_train_proba, sample_weight=w_t
rain)

Plotting the ROC curve for the Random Forest algorithm
 roc_auc_rf = auc(fpr_rf,tpr_rf)

 roc_auc_rf_train = auc(fpr_train_rf,tpr_train_rf)

 plt.rcParams['figure.figsize'] = (10,5)
#Random Forest 1st method

 plt.plot(fpr_rf,tpr_rf, color='green', label='RandomForestClassifier AUC_test = %.4f' % (roc_auc_rf))
 plt.plot(fpr_train_rf,tpr_train_rf, color='magenta', label='RandomForestClassifier AUC_train = %.4f' % (roc_auc_rf

_train))
#Random Forest 2nd method : use the sklearn function "plot_roc_curve"
#rfc_disp = plot_roc_curve(rfc, X_train_val,Y_train_val,color='brown',ax=ax, sample_weight=w_train)
#rfc_disp = plot_roc_curve(rfc, X_test, Y_test, color='grey',ax=ax, sample_weight=w_test)
#random chance

 plt.plot([0, 1], [0, 1], linestyle='--', color='k', label='random chance')
 plt.xlim([0, 1.0]) #fpr
 plt.ylim([0, 1.0]) #tpr

plt.xlabel('False Positive Rate(FPR)')
plt.ylabel('True Positive Rate(TPR)')

 plt.title('Receiver Operating Characteristic (ROC)',fontsize=12,fontweight='bold', color='r')
plt.legend(loc="lower right")
plt.show()

blocked URL

https://raw.githubusercontent.com/bdanzi/Higgs_exercise/main/ANN_score.png
https://raw.githubusercontent.com/bdanzi/Higgs_exercise/main/ROC_RF.png

Plot Efficiency x Purity -- Random Forest

Other metrics:
plt.plot(t_rf, p_rf[:-1], label='purity_test')
plt.plot(t_train_rf, p_train_rf[:-1], label='purity_test')
plt.plot(t_rf, r_rf[:-1], label='efficiency_test')
plt.plot(t_train_rf, r_train_rf[:-1], label='efficiency_train')

 plt.rcParams['figure.figsize'] = (10,5)
plt.plot(t_rf,p_rf[:-1]*r_rf[:-1],label='purity*efficiency_test')
plt.plot(t_train_rf,p_train_rf[:-1]*r_train_rf[:-1],label='purity*efficiency_train')
plt.ylabel('Purity*efficiency')
plt.xlabel('Threshold/cut on the RF score')

 plt.title('Purity*efficiency vs Threshold on the RF score',fontsize=12,fontweight='bold', color='r')
 plt.tick_params(width=2, grid_alpha=0.5)

plt.legend(markerscale=50)
plt.show()

blocked URL

Random Forest score for training and test datasets (bkg and sig)

 Y_sig_rfc = randomforest.predict_proba(X_sig) #probability of belonging to the signal(bkg) class for all signal
events

 Y_bkg_rfc = randomforest.predict_proba(X_bkg) #probability of belonging to the signal(bkg) class for all bkg
events

 Y_test_sig_rf= randomforest.predict_proba(X_test_sig) # the same for all signal events in the test dataset
 Y_test_bkg_rf = randomforest.predict_proba(X_test_bkg) # the same for all bkg events in the test dataset
 Y_train_sig_rf = randomforest.predict_proba(X_train_sig) # the same for all sig events in the training dataset
 Y_train_bkg_rf = randomforest.predict_proba(X_train_bkg) # the same for all bkg events in the training dataset

Random Forest score Plot for the whole dataset
 X = np.linspace(0.0, 1.0, 100) #100 numbers between 0 and 1

 plt.rcParams['figure.figsize'] = (10,5)
 hist_test_sig = plt.hist(Y_test_sig_rf[:,1], bins=X, label='test_sig',histtype='step',log=True,density=1)
 hist_test_bkg = plt.hist(Y_test_bkg_rf[:,1], bins=X, label='test_bkg',histtype='step',log=True,density=1)
 hist_train_sig = plt.hist(Y_train_sig_rf[:,1], bins=X, label='train_sig',histtype='step',log=True,density=1)
 hist_train_bkg = plt.hist(Y_train_bkg_rf[:,1], bins=X, label='train_bkg',histtype='step',log=True,density=1)

plt.xlabel('RF score')
plt.ylabel('Frequency')

 plt.legend(loc='upper center',prop={'size': 8})
 plt.title('RF score normalized distribution on the whole dataset',fontsize=12,fontweight='bold', color='r')

plt.show()

blocked URL

We choose a threshold on the RF score for labelling signal and background events looking at the
previous plots
cut_rf=0.6

 y_pred_rfc[y_pred_rfc >= cut_rf]=1 #classify them as signal
 y_pred_rfc[y_pred_rfc < cut_rf]=0 #classify them as background

#print("y_pred_rfc.shape",y_pred_rfc.shape)
#print("y_pred_rfc",y_pred_rfc)

#Metrics for the RandomForest
 accuracy_rfc = accuracy_score(y_true, y_pred_rfc, sample_weight=w_test) #fraction of correctly classified events
 precision_rfc = precision_score(y_true, y_pred_rfc, sample_weight=w_test) #Precision of the positive class in

binary classification
 recall_rfc = recall_score(y_true, y_pred_rfc, sample_weight=w_test) #Recall of the positive class in binary

classification
 f1_rfc = 2*precision_rfc*recall_rfc/(precision_rfc+recall_rfc)

 print('Cut/Threshold on the Random Forest output : %.4f' % cut_rf)
 print('Random Forest Test Accuracy: %.4f' % accuracy_rfc)

 print('Random Forest Test Precision/Purity: %.4f' % precision_rfc)
 print('Random Forest Test Sensitivity/Recall/TPR/Signal Efficiency: %.4f' % recall_rfc)

 print('RF Test F1: %.4f' %f1_rfc)
print('')

Cut/Threshold on the Random Forest output : 0.6000
Random Forest Test Accuracy: 0.9471
Random Forest Test Precision/Purity: 0.9180
Random Forest Test Sensitivity/Recall/TPR/Signal Efficiency: 0.9827
RF Test F1: 0.9492

https://raw.githubusercontent.com/bdanzi/Higgs_exercise/main/Pur*eff_RF.png
https://raw.githubusercontent.com/bdanzi/Higgs_exercise/main/RF_score.png

print('Cut/Threshold on the Random Forest output : %.4f' % cut_rf)
#cm_rfc = confusion_matrix(y_true, y_pred_rfc, sample_weight=w_test)
#disp_rfc = ConfusionMatrixDisplay(confusion_matrix=cm_rfc, display_labels='bs')
#disp_rfc.plot()

 plt.style.use('default') # It's ugly otherwise
 plt.figure(figsize=(10,10))

plt.subplot(2,1,1)
 mat = confusion_matrix(y_true_train, y_pred_rfc_train,sample_weight=w_train,normalize='all')

 sns.heatmap(mat.T, square=True, annot=True, fmt='.4f', cbar=True,linewidths=1,linecolor='black')
plt.xlabel('True label')
plt.ylabel('Predicted label');

 plt.title('Normalized Confusion Matrix for the Train data set - Random Forest ')

 plt.subplot(2, 1, 2)
 mat = confusion_matrix(y_true, y_pred_rfc ,sample_weight=w_test, normalize='all')

 sns.heatmap(mat.T, square=True, annot=True, fmt='.4f' , cbar=True,linewidths=1,linecolor='black')
plt.xlabel('True label')
plt.ylabel('Predicted label');
plt.title('Normalized Confusion Matrix for the Test data set - Random Forest ')

Cut/Threshold on the Random Forest output : 0.6000

blocked URL

##Superimposition RF and ANN ROC curves
 plt.rcParams['figure.figsize'] = (10,5)

 plt.plot(fpr_train, tpr_train, color='red', label='NN AUC_train = %.4f' % (roc_auc_train))
 plt.plot(fpr, tpr, color='cyan', label='NN AUC_test = %.4f' % (roc_auc))

#Random Forest 1st method
 plt.plot(fpr_train_rf,tpr_train_rf, color='blue', label='RandomForestClassifier AUC_train = %.4f' % (roc_auc_rf_tr

ain))
 plt.plot(fpr_rf,tpr_rf, color='grey', label='RandomForestClassifier AUC_test = %.4f' % (roc_auc_rf))

#Random Forest 2nd method
#rfc_disp = plot_roc_curve(rfc, X_train_val,Y_train_val,color='brown',ax=ax, sample_weight=w_train)
#rfc_disp = plot_roc_curve(rfc, X_test, Y_test, color='grey',ax=ax, sample_weight=w_test)
#random chance

 plt.plot([0, 1], [0, 1], linestyle='--', color='k', label='random chance')
 plt.xlim([0, 1.0]) #fpr
 plt.ylim([0, 1.0]) #tpr

 plt.title('Receiver Operating Characteristic (ROC)',fontsize=12,fontweight='bold', color='r')
plt.xlabel('False Positive Rate(FPR)')
plt.ylabel('True Positive Rate(TPR)')
plt.legend(loc="lower right")
plt.show()

blocked URL

Plot physics observables

We can easily plot the quantities (e.g. , , , ,) for those events in the datasets which haveblocked URL blocked URL blocked URL blocked URL blocked URL
the ANN and the RF output scores greater than the chosen decision threshold in order to show that the ML discriminators did learned from physics
observables!
The subsections of this notebook part are:

Artificial Neural Network rates fixing an ANN score threshold from data frame
Exercise 2 - Random Forest rates fixing a RF score threshold from data frame
Plot some physical quantities after that the event selection is applied

import matplotlib as mpl
 import matplotlib.pyplot as plt

Define a data frame for low level features
 data = df_all.filter(NN_VARS)
 X_all = np.asarray(data.values).astype(np.float32)

#Use it for evaluating the NN output score for the entire data set
 Y_all = model.predict(X_all)

Artificial Neural Network rates fixing an ANN score threshold from data frame

Let's fix a cut (looking at the performance of our models in terms of the previous metrics plot) on our test statistic (ANN score and RFpurity*efficiency
score) to select mostly VBF Higgs production signal events!

https://raw.githubusercontent.com/bdanzi/Higgs_exercise/main/CM_Random.png
https://raw.githubusercontent.com/bdanzi/Higgs_exercise/main/ROC_tot.png
https://render.githubusercontent.com/render/math?math=m_%7Bjj%7D&mode=inline
https://render.githubusercontent.com/render/math?math=%5Ceta_%7Bj%7D&mode=inline
https://render.githubusercontent.com/render/math?math=m_%7B4l%7D&mode=inline
https://render.githubusercontent.com/render/math?math=m_%7BZ_%7B1%7D%7D&mode=inline
https://render.githubusercontent.com/render/math?math=m_%7BZ_%7B2%7D%7D&mode=inline

Add the ANN prediction array 'NNoutput'column to the complete dataframe in order
keep the information about the ML algorithm prediction for every event in the whole dataset

 df_all['NNoutput'] = Y_all
Selects events with NNoutput > cut (and RFoutput > cut_rf later on)

 cut_dnn = 0.6
 df_sel = df_all[(df_all['NNoutput'] >= cut_dnn)]
 df_TP = df_all[(df_all['NNoutput'] >= cut_dnn) & (df_all['isSignal'] == 1)]

 df_unsel = df_all[(df_all['NNoutput'] < cut_dnn)]
 df_TN = df_all[(df_all['NNoutput'] < cut_dnn) & (df_all['isSignal'] == 0)]

 TP = len(df_TP)
 FP = len(df_sel) - TP
 TN = len(df_TN)
 FN = len(df_unsel) - TN

 truepositiverate = float(TP)/(TP+FN)
 fakepositiverate = float(FP)/(FP+FN)

 print('ANN score cut chosen:%.4f' % cut_dnn)
print("TP rate = %.4f"%truepositiverate)
print("FP rate = %.4f"%fakepositiverate)

ANN score cut chosen:0.6000
TP rate = 0.9494
FP rate = 0.9647

Exercise 2 - Random Forest rates fixing a RF score threshold from dataframe

You can do the same steps for the Random Forest algorithm!

Y_all_rf = randomforest.predict(X_all)
 df_all['RFoutput'] = Y_all_rf

 cut_rf = 0.6
 df_sel_rf = df_all[(df_all['RFoutput'] >= cut_rf)]
 df_TP_rf = df_all[(df_all['RFoutput'] >= cut_rf) & (df_all['isSignal'] == 1)]

 df_unsel_rf = df_all[(df_all['RFoutput'] < cut_rf)]
 df_TN_rf = df_all[(df_all['RFoutput'] < cut_rf) & (df_all['isSignal'] == 0)]

 TP_rf = len(df_TP_rf)
 FP_rf = len(df_sel_rf) - TP_rf
 TN_rf = len(df_TN_rf)
 FN_rf = len(df_unsel_rf) - TN_rf

 truepositiverate_rf = float(TP_rf)/(TP_rf+FN_rf)
 fakepositiverate_rf = float(FP_rf)/(FP_rf+FN_rf)

 print('RF score cut chosen: %.4f' % cut_rf)
print("TP rate = %.4f"%truepositiverate_rf)
print("FP rate = %.4f"%fakepositiverate_rf)

RF score cut chosen: 0.6000
TP rate = 0.9812
FP rate = 0.9874

Plot some physical quantities after that the event selection is applied

Note that we have not used the in the training phase of our models, they behaved as . We will plot the distribution oflow-level features spectator variables
events considering their (in the legend and) and the distributions for the two classes that our classifiers have built afteractual label signal background
having fixed a threshold on their output scores.

Question to students: look at the plots and comment on them. Taking into account the physics processes involved, did you expect these distributions?

Hint: The datasets are simulated events in which the Higgs boson is produced with a mass of 125 GeV. Therefore, we expect to see one Zon-mass-shell
boson and another Z boson.off-mass-shell

Plot high level variables for signal, background and NN/RF selected events

plt.xlabel('$\Delta \eta $ between j_1 and j_2')
 X = np.linspace(0.0,10.,100)

 plt.rcParams['figure.figsize'] = (10,5)
Plot bkg events

 df_all['f_deltajj'][(df_all['isSignal'] == 0)].plot.hist(bins=X, label='bkg',histtype='step', density=1)
Plot signal events

 df_all['f_deltajj'][(df_all['isSignal'] == 1)].plot.hist(bins=X, label='signal',histtype='step', density=1)
Plot selected events by the ANN

 df_sel['f_deltajj'].plot.hist(bins=X, label='NN',histtype='step', density=1)
Plot selected events by the RF

 df_sel_rf['f_deltajj'].plot.hist(bins=X, label='RF',histtype='step', density=1)
plt.legend(loc='best')

 plt.title('$\Delta \eta $ between j_1 and j_2 normalized distribution',fontsize=12,fontweight='bold', color='r'
)
plt.xlim(0,10)
plt.show()

blocked URL

Plot dijets mass for signal, background and NN/RF selected events
plt.xlabel('massjj (GeV)')
 X = np.linspace(0.0,1000.,100)

 plt.rcParams['figure.figsize'] = (10,5)
 df_all['f_massjj'][(df_all['isSignal'] == 0)].plot.hist(bins=X, label='bkg',histtype='step', density=1)
 df_all['f_massjj'][(df_all['isSignal'] == 1)].plot.hist(bins=X, label='signal',histtype='step', density=1)

 df_sel['f_massjj'].plot.hist(bins=X, label='NN',histtype='step', density=1)
 df_sel_rf['f_massjj'].plot.hist(bins=X, label='RF',histtype='step', density=1)

 plt.title('m_{jj} normalized distribution',fontsize=12,fontweight='bold', color='r')
plt.legend(loc='upper right')
plt.xlim(0,1000)

blocked URL

Plot dijets mass for signal, background and NN/RF selected events
plt.xlabel('f_mass4l (GeV)')
 X = np.linspace(50, 400, 100)

 plt.rcParams['figure.figsize'] = (10,5)
 df_all['f_mass4l'][(df_all['isSignal'] == 0)].plot.hist(bins=X, label='bkg',histtype='step',log=True, density=1)
 df_all['f_mass4l'][(df_all['isSignal'] == 1)].plot.hist(bins=X, label='signal',histtype='step',log=True, density=1)

 df_sel['f_mass4l'].plot.hist(bins=X, label='NN',histtype='step', log=True, density=1)
 df_sel_rf['f_mass4l'].plot.hist(bins=X, label='RF',histtype='step',log=True, density=1)

 plt.title('$mass(4\mu)$ normalized distribution',fontsize=12,fontweight='bold', color='r')
plt.legend(loc='upper right')
plt.xlim(50,400)

blocked URL

plt.xlabel('f_Z1mass (GeV)')
 X = np.linspace(20, 150, 100)

 plt.rcParams['figure.figsize'] = (10,5)
 df_all['f_Z1mass'][(df_all['isSignal'] == 0)].plot.hist(bins=X, label='bkg',histtype='step',log=True ,density=1)
 df_all['f_Z1mass'][(df_all['isSignal'] == 1)].plot.hist(bins=X, label='signal',histtype='step',log=True, density=1)

 df_sel['f_Z1mass'].plot.hist(bins=X, label='NN',histtype='step', log=True,density=1)
 df_sel_rf['f_Z1mass'].plot.hist(bins=X, label='RF',histtype='step',log=True, density=1)

 plt.title('$mass(Z_{1})$ normalized distribution',fontsize=12,fontweight='bold', color='r')
plt.legend(loc='upper right')
plt.xlim(20,150)

blocked URL

plt.xlabel('f_Z2mass (GeV)')
 X = np.linspace(0., 150, 100)

 plt.rcParams['figure.figsize'] = (10,5)
 df_all['f_Z2mass'][(df_all['isSignal'] == 0)].plot.hist(bins=X, label='bkg',histtype='step', density=1)
 df_all['f_Z2mass'][(df_all['isSignal'] == 1)].plot.hist(bins=X, label='signal',histtype='step', density=1)

 df_sel['f_Z2mass'].plot.hist(bins=X, label='NN',histtype='step', density=1)
 df_sel_rf['f_Z2mass'].plot.hist(bins=X, label='RF',histtype='step', density=1)

 plt.title('$mass(Z_{2})$ normalized distribution',fontsize=12,fontweight='bold', color='r')
plt.legend(loc='upper right')
plt.xlim(0.,150)

blocked URL

Let's do the same for some variables which we have not used during the training phase. What can you say about them?

https://raw.githubusercontent.com/bdanzi/Higgs_exercise/main/deltaeta.png
https://raw.githubusercontent.com/bdanzi/Higgs_exercise/main/massjj.png
https://raw.githubusercontent.com/bdanzi/Higgs_exercise/main/mass4l.png
https://raw.githubusercontent.com/bdanzi/Higgs_exercise/main/massZ1.png
https://raw.githubusercontent.com/bdanzi/Higgs_exercise/main/massz2.png

Plot Jet1 eta for signal, background and NN/RF selected events
plt.xlabel('η(Jet1)')
 X = np.linspace(-5.,5.,100)

 plt.rcParams['figure.figsize'] = (10,5)
 df_all['f_jet1_eta'][(df_all['isSignal'] == 0)].plot.hist(bins=X, label='bkg',histtype='step', density=1)
 df_all['f_jet1_eta'][(df_all['isSignal'] == 1)].plot.hist(bins=X, label='signal',histtype='step', density=1)

 df_sel['f_jet1_eta'].plot.hist(bins=X, label='NN',histtype='step', density=1)
 df_sel_rf['f_jet1_eta'].plot.hist(bins=X, label='RF',histtype='step', density=1)

plt.legend(loc='upper right')
 plt.title('$jet1(\eta)$ normalized distribution',fontsize=12,fontweight='bold', color='r')

plt.xlim(-5,5)

blocked URL

Plot Jet2 eta for signal, background and NN/RF selected events
plt.xlabel('η(Jet2)')
 X = np.linspace(-5.,5.,100)

 plt.rcParams['figure.figsize'] = (10,5)
 df_all['f_jet2_eta'][(df_all['isSignal'] == 0)].plot.hist(bins=X, label='bkg',histtype='step', density=1)
 df_all['f_jet2_eta'][(df_all['isSignal'] == 1)].plot.hist(bins=X, label='signal',histtype='step', density=1)

 df_sel['f_jet2_eta'].plot.hist(bins=X, label='NN',histtype='step', density=1)
 df_sel_rf['f_jet2_eta'].plot.hist(bins=X, label='RF',histtype='step', density=1)

 plt.title('$jet2(\eta)$ normalized distribution',fontsize=12,fontweight='bold', color='r')
plt.legend(loc='upper right')
plt.xlim(-5,5)
blocked URL

Optional Exercise 1 - Change the decay channel

Question to students: What happens if you switch to the 4e decay channel? You can submit your model (see the ML challenge below) for this physical
process as well!

Optional Exercise 2 - Merge the backgrounds

Question to students: Merge the backgrounds used up to now for the training of our ML algorithms together with the ROOT File named ttH_HToZZ_4L.
. In this case, you will use also the QCD background. Uncomment the correct lines of code to proceed!root blocked URL irreducible

Machine Learning challenge

Once you manage to improve the network (random forest) performances, you can submit your results and participate in our ML challenge. The challenge
samples are available in this workspace, but the true labels () are removed so that you can't compute the AUC.isSignal

You can participate as a single participant or as a team
The winner is the one scoring the best AUC in the challenge samples!
In the next box, you will find some lines of code for preparing an output csv file, containing your y_predic for this new dataset!
Choose a meaningful name for your result csv file (i.e. your name, or your team name, the model used for the training phase, and the decay
channel - 4 or 4e - but avoid to submit)results.csv
Download the csv file and upload it here: https://recascloud.ba.infn.it/index.php/s/CnoZuNrlr3x7uPI
You can submit multiple results, paying attention to name them accordingly (add the version number, such as , , etc.)v1 v34
You can use this exercise as a starting point (train over constituents)
We will consider your best result for the final score.
The winner will be asked to present the ML architecture!

Have fun!

https://raw.githubusercontent.com/bdanzi/Higgs_exercise/main/etaj1.png
https://raw.githubusercontent.com/bdanzi/Higgs_exercise/main/j2eta.png
https://render.githubusercontent.com/render/math?math=gg%5Cto%20t%5Cbar%20tH&mode=inline
https://recascloud.ba.infn.it/index.php/s/CnoZuNrlr3x7uPI

Evaluate performance on an independent sample
DO NOT CHANGE BELOW!

 from google.colab import files

 files = {
 "input_hl.csv":"dBHt9vsvKDUkJNt" #high level features
 }

 !rm -f *.root
 import os

 for file in files.items():
 if not os.path.exists(file[0]):
 b = os.system ("wget -O %s --no-check-certificate 'https://recascloud.ba.infn.it/index.php/s/%s/download'" %

 file)
 if b: raise IOError ("Error in downloading the file %s : (%s)" % file)

 filename = {}

 df_challenge = {}
#Open the file with dat aset without y_true (only features used for the training of the previous NN model)

 filename['input'] = 'input_hl.csv'
 df_challenge['input'] = pd.read_csv(filename['input'])

print(df_challenge['input'].shape)
 df_challenge['input'].columns= NN_VARS

 X_challenge = np.asarray(df_challenge['input'].values).astype(np.float32)
 ret = model.predict(X_challenge[:,0:NDIM])

print(ret.shape)
print(ret)
#Convert the y_pred in a dataframe

 df_answer= pd.DataFrame(ret)
df_answer.head()

(164560, 5)
(164560, 1)
[[1.7398037e-05]
 [3.2408145e-01]
 [1.1487612e-04]
 ...
 [2.4130943e-01]
 [1.4921818e-05]
 [8.3920550e-01]]

0

0 1.739804e-05

1 3.240815e-01

2 1.148761e-04

3 6.713818e-10

4 4.403101e-01

#Check of the input data set without y_true
df_challenge['input'].head()

Out[]:

f_massjj f_deltajj f_mass4l f_Z1mass f_Z2mass

455391
37.84924 0.265574 250.71579 90.258550 92.479004

420
184.81750 2.526370 124.09136 51.867190 19.181890

577983
98.07868 1.013983 242.51971 90.871605 84.223770

588664
311.60022 3.564375 445.38763 96.455420 85.431280

694879
314.22964 1.997842 87.87457 60.768753 17.779630

Converting the dataframe into a csv file
Modify the 'answer.csv' string in the line code below and insert your name and the ML model trained (rf or nn)!
Example: df_answer.to_csv('mario_rossi_rf_4mu.csv')
df_answer.to_csv('answer_2017_trial.csv')
print('Your y_pred has been created! Download it from your Drive directory!\n')

 !ls -l

Your y_pred has been created! Download it from your Drive directory!

total 12884
-rw-r--r-- 1 root root 37013 Apr 22 18:11 05.08-decision-tree.png
-rw-r--r-- 1 root root 46864 Apr 22 18:10 ANN_model.h5
-rw-r--r-- 1 root root 2981984 Apr 22 18:13 answer_2017_trial.csv
-rw-r--r-- 1 root root 9160896 Apr 22 18:13 input_hl.csv
-rw-r--r-- 1 root root 44288 Apr 22 18:08 model.png
-rw-r--r-- 1 root root 902391 Apr 22 18:12 rf_model.pkl
drwxr-xr-x 1 root root 4096 Apr 21 13:39 sample_data

Upload your results here:

https://recascloud.ba.infn.it/index.php/s/CnoZuNrlr3x7uPI

References

Attachments
Here it is the complete notebook:

https://recascloud.ba.infn.it/index.php/s/CnoZuNrlr3x7uPI

	11. Signal/background discrimination for the VBF Higgs four lepton decay channel with the CMS experiment using Machine Learning classification techniques

