13. ML for smart caching

Author(s)
How to Obtain Support
General Information
Software and Tools
Needed datasets
Short Description of the Use Case
How to execute it
© Base requirement packages (Debian based distro)
© Get the tools
O Create a dataset
© Run the simulation
© Explore the results
® Annotated Description
® References
® Attachments

Author(s)

Name Institution Mail Address Social Contacts

Mirco Tracolli | INFN Section Perugia = mirco.tracolli@pg.infn.it | N/A

How to Obtain Support

Mail mirco.tracolli@pg.infnit
Social | N/A
Jira N/A

General Information

ML/DL Technologies = ML/RL

Science Fields High Energy Physics, Computing, Cache
Difficulty medium

Language English

Type runnable, external resource

Software and Tools

Programming Language Python3, Go

ML Toolset Keras, Tensorflow, sklearn

Additional libraries

Suggested Environments | bare Linux Node

Needed datasets

https://confluence.infn.it/display/~tracolli
mailto:mirco.tracolli@pg.infn.it
mailto:mirco.tracolli@pg.infnit

Data Creator Ad hoc tool

Data Type logs of data analysis file requests
Data Size depending on the configuration of the generator tool

Data Source @ data generator tool: https://github.com/Cloud-PG/dataset-generator

Short Description of the Use Case

Accessing data is a very important task in the data analysis flow and usually, there are several frameworks and software layers that make it possible to
accomplish such a target. In particular, recent studies are focused on Data Lake Cache management to optimize the data flow through the clients. The
caching layer is a very important part of the data flow that should be optimized, especially if the data are distributed and also the compute centers are
decentralized.

Since the infrastructure part is in continuous development, a simulation environment is needed to test and experiments with different approaches to
improve the caching performances in a Data Lake. As a result, this project allows you to have a playground where to test new features or algorithms.

How to execute it

Base requirement packages (Debian based distro)
® git
® python3 (python3-dev, python3-pip)
® golang

Get the tools

First, you need the data generator to create a synthetic dataset. The data generator used in this project is the following:
® https://github.com/Cloud-PG/dataset-generator
With such a generator, you can create a dataset that has requests similar to the HEP context in which this project was born.
Note: all the Pyt hon commands refers to the Pyt hon 3 environment
Create a folder for the whole project
nkdir myProj ect
cd nyProj ect

Downl oad the repository
git clone https://github. conm d oud- PG dat aset -generator.git

Enter the project folder
cd dat aset - gener at or

Install dependencies
pip3 install -r requirenents.txt

Back to main project folder
cd

Secondly, you can download the simulation environment:

https://github.com/Cloud-PG/dataset-generator
https://github.com/Cloud-PG/dataset-generator

Downl oad the repository
git clone --branch v2.0.2 https://github.conl C oud-PE snart-cache. git

Enter the project folder
cd snart-cache

Install the Uilities
cd SnartCache/simUtilities
pip3 install -e .

cd ../..1..

Install the Probe nodul e
cd Probe

pyt hon3 setup. py install
cd ..

Install general requirenents
pip3 install col oredl ogs col orana dash_daq bi okit

Back to main project folder
cd ..

Create a dataset

You can use a preset config to generate a dataset with the following command:

pyt hon3 dat aset - gener at or/ dat aset _generator. py gen dat aset-generator/configs/H ghFreqDat aset.json --dest-folder
/ dat aset

Of course, you can edit the Hi ghFr eqDat aset . j son file in the conf i gs folder to customize your data generator. Here you can see an example of such
a configuration:

{
"seed": 42,
"num days": 365,
"numreq_x_day": -1,
"dest_folder": "Hi ghFrequencyDataset",
"function": {
"function_nanme": "H ghFrequencyDat aset”,
"kwar gs": {
"num files": 1000,
"mn_file_size": 1000,
"max_file_size": 4000,
"l anbda_l ess_req_files": 1.0
"l anbda_nore_req_files":
"perc_nore_req_files": 25
"perc_files_x_day": 1.0,
"size_generator_function": "gen_random sizes"

0.0,
0

}

After the dataset creation, you will see the dataset files into the dat aset folder in the main of the project.

Run the simulation

First, you need to compile the simulator:

Conpile the sinulator
python3 -mutils conpile --rel ease --fast

Then, you can get the simulator executable with the following command:

Get sinmulator exec path
export SIM=$(python3 -mutils simpath)

Check sinul ator executable is working
$SI M hel p

After that, you can run a simulation using the datatset previously generated. To do this, you need to create a proper simulation config file, like the following:

--- # Simulation parameters
sim
data: ./dataset
out put Fol der: ./results/
type: nornal

wi ndow:
start: O
stop: 52
region: it
overwite: true
cache:
Use Reinforcenent |earning Al
type: aiRL

wat er marks: fal se
Create a cache with 10G si ze
si ze:
val ue: 10
unit: G
bandwi dt h:
value: 1
redirect: true
ai:
rl:
epsi |l on:
decay: 0.001
addi tion:
featuremap: ./smart-cache/featureMaps/rl Additi onFeatureMap.json
evi ction:
featuremap: ./smart-cache/featureMaps/rl Evi cti onFeat ureMap.json

Create the above config with the following command:

cat << EOF > sinul ation. conf.yanl
--- # Sinulation paraneters
sim
data: $(pwd)/dataset
out put Fol der: $(pwd)/results
type: nornal

w ndow:
start: O
stop: 52
region: it
overwite: true
cache:
Use Reinforcenent |earning Al
type: aiRL

wat er marks: fal se
Create a cache with 10G size
si ze:
val ue: 10
unit: G
bandw dt h:
val ue: 1
redirect: true
ai:
rl:
epsi |l on:
decay: 0.001
addi tion:
featuremap: $(pwd)/smart-cache/featureMaps/rl AdditionFeat ureMap.json
evi ction:
featuremap: $(pwd)/snart-cache/featureMaps/rl EvictionFeatureMap.json
ECF

Finally, run the simulation with:

$SI M si m si nul ati on. conf. yan

Explore the results

The simulation results will be stored in a folder named resul t s/ run_ful | _normal / ai RL_SCDL2- onK_10G_1Cbi t _i t/, that may change based on
the simulation configuration file. The folder contains a . csv file with the simulation results and and other files containing some simulation statistics. You
can load these results using a Pyt hon library like pandas or you can examine them using the dashboard from the Pr obe module:

python3 -m probe.results dashboard results

Finally, the dashboard will be available at http://localhost:8050/ by default. If you need a specific ip for the dashboard, you can set the proper parameter (e.
g.-dash-ip 0.0.0.0).

http://localhost:8050/

Annotated Description

N/A

References

® https://github.com/Cloud-PG/dataset-generator
® https://github.com/Cloud-PG/smart-cache

Attachments

N/A

https://github.com/Cloud-PG/dataset-generator
https://github.com/Cloud-PG/smart-cache

	13. ML for smart caching

