
13. ML for smart caching

Author(s)
How to Obtain Support
General Information
Software and Tools
Needed datasets
Short Description of the Use Case
How to execute it

Base requirement packages (Debian based distro)
Get the tools
Create a dataset
Run the simulation
Explore the results

Annotated Description
References
Attachments

Author(s)

Name Institution Mail Address Social Contacts

Mirco Tracolli INFN Section Perugia mirco.tracolli@pg.infn.it N/A

How to Obtain Support

Mail mirco.tracolli@pg.infnit

Social N/A

Jira N/A

General Information

ML/DL Technologies ML/RL

Science Fields High Energy Physics, Computing, Cache

Difficulty medium

Language English

Type runnable, external resource

Software and Tools

Programming Language Python3, Go

ML Toolset Keras, Tensorflow, sklearn

Additional libraries

Suggested Environments bare Linux Node

Needed datasets

https://confluence.infn.it/display/~tracolli
mailto:mirco.tracolli@pg.infn.it
mailto:mirco.tracolli@pg.infnit

Data Creator Ad hoc tool

Data Type logs of data analysis file requests

Data Size depending on the configuration of the generator tool

Data Source data generator tool: https://github.com/Cloud-PG/dataset-generator

Short Description of the Use Case
Accessing data is a very important task in the data analysis flow and usually, there are several frameworks and software layers that make it possible to
accomplish such a target. In particular, recent studies are focused on Data Lake Cache management to optimize the data flow through the clients. The
caching layer is a very important part of the data flow that should be optimized, especially if the data are distributed and also the compute centers are
decentralized.

Since the infrastructure part is in continuous development, a simulation environment is needed to test and experiments with different approaches to
improve the caching performances in a Data Lake. As a result, this project allows you to have a playground where to test new features or algorithms.

How to execute it

Base requirement packages (Debian based distro)

git
python3 (python3-dev, python3-pip)
golang

Get the tools

First, you need the data generator to create a synthetic dataset. The data generator used in this project is the following:

https://github.com/Cloud-PG/dataset-generator

With such a generator, you can create a dataset that has requests similar to the HEP context in which this project was born.

Note: all the commands refers to the environmentPython Python 3

Create a folder for the whole project
mkdir myProject
cd myProject

Download the repository
git clone https://github.com/Cloud-PG/dataset-generator.git

Enter the project folder
cd dataset-generator

Install dependencies
pip3 install -r requirements.txt

Back to main project folder
cd ..

Secondly, you can download the simulation environment:

https://github.com/Cloud-PG/dataset-generator
https://github.com/Cloud-PG/dataset-generator

Download the repository
git clone --branch v2.0.2 https://github.com/Cloud-PG/smart-cache.git

Enter the project folder
cd smart-cache

Install the Utilities
cd SmartCache/sim/Utilities
pip3 install -e .
cd ../../..

Install the Probe module
cd Probe
python3 setup.py install
cd ..

Install general requirements
pip3 install coloredlogs colorama dash_daq biokit

Back to main project folder
cd ..

Create a dataset

You can use a preset config to generate a dataset with the following command:

python3 dataset-generator/dataset_generator.py gen dataset-generator/configs/HighFreqDataset.json --dest-folder .
/dataset

Of course, you can edit the file in the folder to customize your data generator. Here you can see an example of such HighFreqDataset.json configs
a configuration:

{
 "seed": 42,
 "num_days": 365,
 "num_req_x_day": -1,
 "dest_folder": "HighFrequencyDataset",
 "function": {
 "function_name": "HighFrequencyDataset",
 "kwargs": {
 "num_files": 1000,
 "min_file_size": 1000,
 "max_file_size": 4000,
 "lambda_less_req_files": 1.0,
 "lambda_more_req_files": 10.0,
 "perc_more_req_files": 25.0,
 "perc_files_x_day": 1.0,
 "size_generator_function": "gen_random_sizes"
 }
 }
}

After the dataset creation, you will see the dataset files into the folder in the main of the project.dataset

Run the simulation

First, you need to compile the simulator:

Compile the simulator
python3 -m utils compile --release --fast

Then, you can get the simulator executable with the following command:

Get simulator exec path
export SIM=$(python3 -m utils sim-path)

Check simulator executable is working
$SIM help

After that, you can run a simulation using the datatset previously generated. To do this, you need to create a proper simulation config file, like the following:

--- # Simulation parameters
sim:
 data: ./dataset
 outputFolder: ./results/
 type: normal
 window:
 start: 0
 stop: 52
 region: it
 overwrite: true
 cache:
 # Use Reinforcement learning AI
 type: aiRL
 watermarks: false
 # Create a cache with 10G size
 size:
 value: 10
 unit: G
 bandwidth:
 value: 1
 redirect: true
 ai:
 rl:
 epsilon:
 decay: 0.001
 addition:
 featuremap: ./smart-cache/featureMaps/rlAdditionFeatureMap.json
 eviction:
 featuremap: ./smart-cache/featureMaps/rlEvictionFeatureMap.json

Create the above config with the following command:

cat << EOF > simulation.conf.yaml
--- # Simulation parameters
sim:
 data: $(pwd)/dataset
 outputFolder: $(pwd)/results
 type: normal
 window:
 start: 0
 stop: 52
 region: it
 overwrite: true
 cache:
 # Use Reinforcement learning AI
 type: aiRL
 watermarks: false
 # Create a cache with 10G size
 size:
 value: 10
 unit: G
 bandwidth:
 value: 1
 redirect: true
 ai:
 rl:
 epsilon:
 decay: 0.001
 addition:
 featuremap: $(pwd)/smart-cache/featureMaps/rlAdditionFeatureMap.json
 eviction:
 featuremap: $(pwd)/smart-cache/featureMaps/rlEvictionFeatureMap.json
EOF

Finally, run the simulation with:

$SIM sim simulation.conf.yaml

Explore the results

The simulation results will be stored in a folder named , that may change based on results/run_full_normal/aiRL_SCDL2-onK_10G_1Gbit_it/
the simulation configuration file. The folder contains a file with the simulation results and and other files containing some simulation statistics. You .csv
can load these results using a library like or you can examine them using the dashboard from the module:Python pandas Probe

python3 -m probe.results dashboard results

Finally, the dashboard will be available at by default. If you need a specific ip for the dashboard, you can set the proper parameter (e.http://localhost:8050/
g.).-dash-ip 0.0.0.0

http://localhost:8050/

Annotated Description
N/A

References
https://github.com/Cloud-PG/dataset-generator
https://github.com/Cloud-PG/smart-cache

Attachments
N/A

https://github.com/Cloud-PG/dataset-generator
https://github.com/Cloud-PG/smart-cache

	13. ML for smart caching

